Appendix.

Ioann Vasilyev

July 6, 2019

Definition 0.0.1. (Diameter) For any subset $U \subset X$ of an n-dimensional normed space ($X,\|\ldots\|$) define its diameter as $\operatorname{diam}(U)=\sup \{\|x-y\|: x, y \in U\}$.
Definition 0.0.2. (Hausdorff measure) Let S be any subset of an n-dimensional normed space $(X,\|\ldots\|)$ and let $\delta>0$ be a real number. For an integer m such that $1 \leq m \leq n$ we define

$$
\mathcal{H}_{\|\ldots\|}^{m, \delta}(S):=\alpha_{m} \inf \left\{\sum_{i=1}^{\infty}\left(\frac{\operatorname{diam}\left(U_{i}\right)}{2}\right)^{m}: U_{i} \subset X \text { are Borelian, } \bigcup_{i=1}^{\infty} U_{i} \supset S, \operatorname{diam}\left(U_{i}\right) \leq \delta\right\}
$$

where $\alpha_{m}:=\frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)}$. Note that $\mathcal{H}_{\|\ldots\|}^{m, \delta}(S)$ is monotone decreasing in δ. Hence we are allowed to define

$$
\mathcal{H}_{\|\ldots\|}^{m}(S):=\sup _{\delta>0} \mathcal{H}_{\|\ldots\|}^{m, \delta}(S)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\|\ldots\|}^{m, \delta}(S)
$$

We call $\mathcal{H}_{\|\ldots\|}^{m}(S)$ the m-dimensional Hausdorff measure of S.
Definition 0.0.3. (Polyhedral chains) Let $(X,\|\ldots\|)$ be an n-dimensional normed space and let G be a complete normed Abelian group. We define $\mathcal{P}_{m}(X, G)$, the Abelian group of m polyhedral chains, as the group of equivalence classes of formal sums of the elements of type

$$
P=\sum_{j=1}^{N} g_{j}\left[\sigma_{j}\right]
$$

where $g_{j} \in G$ and σ_{j} are oriented m-simplexes.
Definition 0.0.4. (Top dimensional chains) Let $(X,\|\ldots\|)$ be an n-dimensional normed space and let G be a complete normed Abelian group. The group $\mathcal{P}_{n}(X, G)$ is called the group of top dimensional polyhedral chains in X.

We adopt the following conventions: if $[\sigma]$ is a simplex endowed with the canonical orientation then we endow $-[\sigma]$ with the opposite orientation. Moreover $g(-[\sigma])=(-g)[\sigma]=-g[\sigma]$; finally any summand whose coefficient is the neutral element of G may be omitted since it gives null contribution. It follows that $P=\sum g_{i}\left[\sigma_{i}\right]$ is the identity element if and only if every g_{i} is the neutral element of G, and the inverse element is obtained by $-P=\sum-g_{i}\left[\sigma_{i}\right]$, thus the group is well defined.

We say that two simplexes σ_{1} and σ_{2} are non overlapping if $\operatorname{int}\left(\sigma_{1}\right) \cap \operatorname{int}\left(\sigma_{2}\right)=\emptyset$. We define the support $\operatorname{spt}(P)$ of P as $\operatorname{spt}(P)=\bigcup_{j} \sigma_{j}$, once σ_{i} are non overlapping and the corresponding elements $g_{i} \neq 0$.
Definition 0.0.5. (Boundary of polyhedral chains) Define a group homeomorphism $\partial: \mathcal{P}_{m}(X, G) \rightarrow$ $\mathcal{P}_{m-1}(X, G)$ called boundary as follows. Let $P=\sum_{j} g_{j}\left[\sigma_{j}\right]$. We first define its value on the basis elements i.e. on simplexes σ_{j} and then extend it by the formula

$$
\partial P=\sum_{j} g_{j} \partial\left[\sigma_{j}\right]
$$

We require $\partial[\sigma]$ to be the sum of all faces of σ each one endowed with an orientation compatible to the exterior normal vector of σ.

Definition 0.0.6. (Mass of polyhedral chains) Let $(X,\|\ldots\|)$ be an n-dimensional normed space and G be a complete normed Abelian group. Let $P \in \mathcal{P}_{m}(X, G)$ be a polyhedral m chain such that $P=\sum_{j=1}^{N} g_{j}\left[\sigma_{j}\right]$, where σ_{j} are non overlapping. We define the mass $\mathbb{M}_{\|\ldots\|}$ of P, as

$$
\mathbb{M}_{\|\ldots\|}(P)=\sum_{j=1}^{N}\left|g_{j}\right| \mathcal{H}_{\|\ldots\|}^{m}\left(\sigma_{j}\right)
$$

Remark 1. We shall often drop the sign $\|\ldots\|$ and simply write \mathbb{M} for the mass instead of $\mathbb{M}_{\|\ldots\|}$.

Remark 2. The mass \mathbb{M} is well defined.
Definition 0.0.7. (Flat norm) Define flat norm $\mathcal{F}(P)$ of a polyhedral chain $P \in \mathcal{P}_{m}(X, G)$ as follows

$$
\mathcal{F}(P)=\inf \left\{\mathbb{M}(Q)+\mathbb{M}(R): Q \in \mathcal{P}_{m}(X, G), R \in \mathcal{P}_{m+1}(X, G), P=Q+\partial R\right\}
$$

Definition 0.0.8. (Flat chains) Let $(X,\|\ldots\|)$ be an n-dimensional normed space and G be a complete normed Abelian group. Define the group of the m-dimensional flat chains denoted by $\mathcal{F}_{m}(X, G)$, as the \mathcal{F} completion of $\mathcal{P}_{m}(X, G)$.

Definition 0.0.9. (Lipschitz chains) Let $(X,\|\ldots\|)$ be an n-dimensional normed space and G be a complete normed Abelian group. We define $\mathcal{L}_{m}(X, G)$, the Abelian group of m-Lipschitz chains, as the subgroup of $\mathcal{F}_{m}(X, G)$ formed by the elements of type

$$
P=\sum_{j=1}^{N} g_{j} \gamma_{j \#}\left[\sigma_{j}\right]
$$

where $g_{j} \in G, \sigma_{j} \subset \mathbb{R}^{m}$ are oriented m-simplexes and $\gamma_{j}: \sigma_{j} \rightarrow X$ are Lipschitz mappings.
Definition 0.0.10. (Rectifiable chains) Let ($X,\|\ldots\|$) be an n-dimensional normed space and G be a complete normed Abelian group. Define the group of the m-dimensional rectifiable chains denoted by $\mathcal{R}_{m}(X, G)$, as the \mathbb{M} completion of $\mathcal{L}_{m}(X, G)$.

