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Centrally symmetric random polytopes

X : symmetric random vector in Rn

Given independent copies X1, . . . ,XN of X define random polytope

PN(X ) := absconv(X1, . . . ,XN) = conv(±X1, . . . ,±XN)

=


N∑
j=1

αjXj : αj ∈ [−1, 1],
N∑
j=1

|αj | ≤ 1


Can we find a (deterministic) large ”canonical body” K ⊂ Rn s.t.

K ⊂ PN(X ) with high probability

under very general and weak conditions on X?

Description of K as intersection of `p-balls?
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Two notable results

Theorem (Gluskin 1989)

Let X be a standard Gaussian random vector in Rn, set 0 < α < 1
and consider N ≥ c0(α)n. Then

c1(α)
√

log(eN/n)Bn
2 ⊂ absconv(X1, . . . ,XN)

with probability at least 1− 2 exp(−c2N1−αnα).

Theorem (Giannopoulos, Hartzoulaki 2002; Litvak, Pajor,
Rudelson, Tomczak-Jaegermann 2005)

Let ξ be a mean-zero, unit variance, L-subgaussian random variable
and set X = (ξi )

n
i=1. For 0 < α < 1, consider N ≥ c0(α, L)n.

Then with probability at least 1− 2 exp(−c1N1−αnα)

c2(α, L)
(
Bn
∞ ∩

√
log(eN/n)Bn

2

)
⊂ absconv(X1, . . . ,XN).

In the case of Rademacher vector X = E , the theorem is false
without the intersection with the unit ball in `∞.
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Floating Bodies
Floating body associated to symmetric random vector X in Rn:

Kp(X ) := {t ∈ Rn : P(〈X , t〉 ≥ 1) ≤ exp(−p)} , p ≥ 1.

Polar body of T ⊂ Rn:

T ◦ = {x ∈ Rn : 〈t, x〉 ≤ 1 for every t ∈ T}

I If X is standard Gaussian in Rn then

Kp(X ) ∼ 1
√
p
Bn
2 and (Kp(X ))◦ ∼ √pBn

2

I If X = E is standard Rademacher in Rn then

Kp(E) ∼ conv(Bn
1∪(1/

√
p)Bn

2 ) and (Kp(E))◦ ∼ Bn
∞∩
√
pBn

2 .

In both cases, for p = α log(eN/n), with high probability

c(Kp(X ))◦ ⊂ absconv(X1, . . . ,XN).

Does this inclusion extend to more general random vectors?
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Assumptions on X
For some norm ‖ · ‖ on Rn, assume that the symmetric random
vector X satisfies

I the small ball condition

P(|〈X , t〉| ≥ γ‖t‖) ≥ δ for all t ∈ Rn

for some constants γ, δ > 0.

I the Lr condition

(E|〈X , t〉|r )1/r ≤ L‖t‖ for all t ∈ Rn

for some r > 0 and some constant L > 0.

Note that assumption

I allows very heavy-tailed random vectors

I does not require independence of the entries of X

I does not require isotropic random vectors X
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Main Theorem

Theorem (Guédon, Krahmer, Kümmerle, Mendelson, R 2019)

Let X be a symmetric random vector that satisfies the assumption
with respect to a norm ‖ · ‖ and some δ, γ, r > 0. Let 0 < α < 1
and set p = α log(eN/n). If

N ≥ c0n for c0 = c0(α, γ, δ, r , L),

then with probability at least 1− 2 exp(−c1N1−αnα),

c2
(
Kp(X )

)◦ ⊂ absconv(X1, . . . ,XN),

where c1 and c2 are absolute constants.

Recovers or improves previous results

I X Gaussian or subgaussian (as discussed)

I X isotropic log-concave (Dafnis, Giannopoulos, Tsolomitis 2009)

I X with independent coordinates satisfying a small ball condition
(Krahmer, Kümmerle, R 2018; Guédon, Litvak, Tatarko 2018;
Mendelson 2019)
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Theorem (Guédon, Krahmer, Kümmerle, Mendelson, R 2019)

Let X be a symmetric random vector that satisfies the assumption
with respect to a norm ‖ · ‖ and some δ, γ, r > 0. Let 0 < α < 1
and set p = α log(eN/n). If

N ≥ c0n for c0 = c0(α, γ, δ, r , L),

then with probability at least 1− 2 exp(−c1N1−αnα),

c2
(
Kp(X )

)◦ ⊂ absconv(X1, . . . ,XN),

where c1 and c2 are absolute constants.

Recovers or improves previous results

I X Gaussian or subgaussian (as discussed)

I X isotropic log-concave (Dafnis, Giannopoulos, Tsolomitis 2009)

I X with independent coordinates satisfying a small ball condition
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Example: q-stable random vectors

X : q-stable random vector, i.e., with independent q-stable entries
(1 ≤ q < 2)

For 1 ≤ q < 2 a standard q-stable random variable ξ is defined via
its characteristic function

E[exp(itξ)] = exp(−|t|q/2) for all t ∈ R.

Recall:

I supu>0 u
qP(|ξ| > u) ≤ Cq, and P(|ξ| > u) ≥ cq/u

q for
u ≥ Mq.

I If ξ1, . . . , ξn are independent copies of ξ then
∑n

i=1 tiξi has
the same distribution as ‖t‖q ξ for all t ∈ Rn (stability
property)

q = 1: Cauchy variable (expectation does not exist)
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Theorem for q-stable random vectors

Theorem
Let X be a q-stable random vector on Rn for some 1 ≤ q < 2 and
let X1, . . . ,XN be independent copies of X . Then for 0 < α < 1
and N ≥ c0(α, q)n, with probability at least
1− 2 exp(−c1N1−αnα),

c2(α, q)

(
N

n

)α/q
Bn
q′ ⊂ absconv(X1, . . . ,XN),

where 1/q + 1/q′ = 1.
In particular, if X is a Cauchy random vector (q = 1), then with
probability at least 1− 2 exp(−c1N1−αnα)

c3(α)

(
N

n

)α
Bn
∞ ⊂ absconv(X1, . . . ,XN).
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Kp(X ) as Lp-centroid body

For X with sufficiently many moments

B(Lp(X )) := {t ∈ Rn : (E|〈X , t〉|p)1/p ≤ 1}

Lp-centroid body
Zp(X ) := Bp(X )◦

If X satisfies the regularity condition

‖〈t,X 〉‖L2q ≤ L‖〈t,X 〉‖Lq for all t ∈ Rn and all q ≥ 2

then (first part consequence of Markov’s inequality)

e−1B(Lp(X )) ⊂ Kp(X ) ⊂ 2B(Lcp(X )).
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Log-concave random vectors

Theorem
Let X be a symmetric logarithmically concave random vector. Let
0 < α < 1, set N ≥ c0(α)n and put p = α log(eN/n). Then, with
probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . ,XN) ⊃ c2(α)Zp(X ).

Improvement over probability estimate due to Dafnis,
Giannopolous, Tsolomitis (2009):

1− 2 exp(−c1N1−αnα)− P
(
‖Γ : `n2 → `N2 ‖ ≥ c

√
N
)
, (1)

where Γ = (X1| · · · |XN)T . (In case of independent entries (1) is
implied by Litvak, Pajor, Rudelson, Tomczak-Jaegermann 2005.)
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Independent entries satisfying small ball assumption

Theorem (Guédon, Litvak, Tatarko 2018)

Let x be a symmetric random variable satisfying Ex2 = 1, let
x1, . . . , xn to be independent copies of x and put X = (xi )

n
i=1. If

there are constants γ, δ > 0 such that P(|x | ≥ γ) ≥ δ, then for
N ≥ c0n, with probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . ,XN) ⊃ c2(Bn
∞ ∩

√
log(eN/n)Bn

2 ).

Here c0 and c2 depend on α, γ and δ, and c1 is an absolute
constant.
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Unconditional random vectors

A random vector X = (xi )
n
i=1 is unconditional if for every vector

(εi )
n
i=1 ∈ {−1, 1}n, (xi )

n
i=1 has the same distribution as (εixi )

n
i=1.

Theorem
Let X be an unconditional random vector that satisfies the
small-ball condition with constants γ and δ. Then, for any
p > c0(δ) = 4 log(8/δ) + log(4),

Kp(X ) ⊂ c(δ)

γ
Kp(E) ∼ c(δ)

γ
(Bn
∞ ∩

√
log(eN/n)Bn

2 ).

In particular, if X satisfies our assumption and
N ≥ c0(α, γ, δ, r , L)n, then with probability at least
1− 2 exp(−c1N1−αnα),

absconv(X1, . . . ,XN)⊃ c ′(δ)γ
(
Bn
∞ ∩

√
log(eN/n)Bn

2

)
.
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Implication for compressive sensing
Compressive sensing problem:
Recover an (approximately) s-sparse vector x ∈ RN , i.e.,

‖x‖0 = #{` : x` 6= 0} ≤ s

from n linear noisy measurements

y = Ax + w with A ∈ Rn×N where n� N.

Recovery via noise-constrained `1-minimization

min
z
‖z‖1 subject to ‖Az − y‖2 ≤ η.

If ‖w‖2 ≤ η for known η and A is a draw of a Gaussian random
matrix with n ∼ s log(eN/s) then with high probability the
minimizer x ] satisfies

‖x − x ]‖1 . σs(x)1 + η

√
s

n
,

where σs(x)1 = infz:‖z‖0≤s ‖x − z‖1.
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Noise-blind compressive sensing
What if a good upper bound η for the noise vector w is not known?

Recovery of x from y = Ax + w via equality-constrained
`1-minimization

min
z
‖z‖1 subject to Az = y . (2)

Analysis based on
I Null space property of A: For some ρ ∈ (0, 1) and for all

v ∈ kerA \ {0} and all S ⊂ {1, . . . ,N}, #S = s

‖vS‖1 ≤ ρ‖vSc‖1.
Satisfied for many random matrices if n ∼ ρ−2s log(eN/s).

I `1-quotient property of A with respect to norm |||w |||: For every
w ∈ Rn there exists a vector v ∈ RN such that Av = w and

‖v‖1 ≤ L−1 |||w |||.
If A satisfies both properties then minimizer x ] of (2) satisfies

‖x ] − x‖1 . σs(x)1 + |||w |||
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The `1-quotient property for random matrices
Let |||·||| be the gauge norm associated to (Kp(X ))◦, i.e.,

|||x |||p = inf{t > 0 : x ∈ t(Kp(X ))◦}.

Set A = (X1| · · · |XN) where X1, . . . ,XN are independent copies of
a random vector X satisfying our (weak) assumptions.

Main result: A satisfies `1-quotient property w.r.t. |||·|||p for

p = α log(eN/n) with probability at least 1− 2 exp(−cN1−αnα).

Example: If X is a standard Gaussian random vector or a vector
with independent student t-distributed random variables with
d = 2 log(N) degrees of freedom then for y = Ax + w the
minimizer x ] of equality-constrained `1-minimization satisfies

‖x ] − x‖1 . σs(x)1 +
√

log(eN/n)‖w‖2 ∼ σs(x)1 + ‖w‖2
√

s

n
.

Error bound involves true noise-level ‖w‖2 instead of upper
estimate η and reconstruction procedure does not require any
knowledge about ‖w‖2.
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Proof method of main theorem

Mendelson’s small ball method:

I By duality need to prove a high probability lower bound

inf
t∈∂Kp(X )

‖Γt‖∞ ≥ c, where Γ = (X1| . . . ,XN)T .

I Show that with high probability the number #{i : 〈Xi , t〉 ≥ 1}
is high for each individual t.

I Extend to a net of ∂Kp(X ) by union bound

I Uniformly bound local variations #{i : |〈Xi , t − πt〉| ≥ 1/2}
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Thanks very much for your attention!
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