On the geometry of random polytopes generated

 by heavy-tailed random vectorsHolger Rauhut
Chair for Mathematics of Information Processing
RWTH Aachen University

Asymtotic Geometric Analysis IV Euler Institute Sankt Petersburg

July 2, 2019

Joint work with
O. Guédon, F. Krahmer, C. Kümmerle, S. Mendelson

Centrally symmetric random polytopes

X : symmetric random vector in \mathbb{R}^{n}
Given independent copies X_{1}, \ldots, X_{N} of X define random polytope

$$
\begin{aligned}
P_{N}(X) & :=\operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)=\operatorname{conv}\left(\pm X_{1}, \ldots, \pm X_{N}\right) \\
& =\left\{\sum_{j=1}^{N} \alpha_{j} X_{j}: \alpha_{j} \in[-1,1], \sum_{j=1}^{N}\left|\alpha_{j}\right| \leq 1\right\}
\end{aligned}
$$

Can we find a (deterministic) large "canonical body" $K \subset \mathbb{R}^{n}$ s.t.

$$
K \subset P_{N}(X) \quad \text { with high probability }
$$

under very general and weak conditions on X ?
Description of K as intersection of ℓ_{p}-balls?

Two notable results

Theorem (Gluskin 1989)
Let X be a standard Gaussian random vector in \mathbb{R}^{n}, set $0<\alpha<1$ and consider $N \geq c_{0}(\alpha) n$. Then

$$
c_{1}(\alpha) \sqrt{\log (e N / n)} B_{2}^{n} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

with probability at least $1-2 \exp \left(-c_{2} N^{1-\alpha} n^{\alpha}\right)$.

Two notable results

Theorem (Gluskin 1989)

Let X be a standard Gaussian random vector in \mathbb{R}^{n}, set $0<\alpha<1$ and consider $N \geq c_{0}(\alpha) n$. Then

$$
c_{1}(\alpha) \sqrt{\log (e N / n)} B_{2}^{n} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

with probability at least $1-2 \exp \left(-c_{2} N^{1-\alpha} n^{\alpha}\right)$.
Theorem (Giannopoulos, Hartzoulaki 2002; Litvak, Pajor, Rudelson, Tomczak-Jaegermann 2005)
Let ξ be a mean-zero, unit variance, L-subgaussian random variable and set $X=\left(\xi_{i}\right)_{i=1}^{n}$. For $0<\alpha<1$, consider $N \geq c_{0}(\alpha, L) n$. Then with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$

$$
c_{2}(\alpha, L)\left(B_{\infty}^{n} \cap \sqrt{\log (e N / n)} B_{2}^{n}\right) \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

In the case of Rademacher vector $X=\mathcal{E}$, the theorem is false without the intersection with the unit ball in ℓ_{∞}.

Floating Bodies

Floating body associated to symmetric random vector X in \mathbb{R}^{n} :

$$
K_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{P}(\langle X, t\rangle \geq 1) \leq \exp (-p)\right\}, \quad p \geq 1
$$

Floating Bodies

Floating body associated to symmetric random vector X in \mathbb{R}^{n} :

$$
K_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{P}(\langle X, t\rangle \geq 1) \leq \exp (-p)\right\}, \quad p \geq 1
$$

Polar body of $T \subset \mathbb{R}^{n}$:

$$
T^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle t, x\rangle \leq 1 \text { for every } t \in T\right\}
$$

Floating Bodies

Floating body associated to symmetric random vector X in \mathbb{R}^{n} :

$$
K_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{P}(\langle X, t\rangle \geq 1) \leq \exp (-p)\right\}, \quad p \geq 1
$$

Polar body of $T \subset \mathbb{R}^{n}$:

$$
T^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle t, x\rangle \leq 1 \text { for every } t \in T\right\}
$$

- If X is standard Gaussian in \mathbb{R}^{n} then

$$
K_{p}(X) \sim \frac{1}{\sqrt{p}} B_{2}^{n} \quad \text { and } \quad\left(K_{p}(X)\right)^{\circ} \sim \sqrt{p} B_{2}^{n}
$$

- If $X=\mathcal{E}$ is standard Rademacher in \mathbb{R}^{n} then

$$
K_{p}(\mathcal{E}) \sim \operatorname{conv}\left(B_{1}^{n} \cup(1 / \sqrt{p}) B_{2}^{n}\right) \quad \text { and } \quad\left(K_{p}(\mathcal{E})\right)^{\circ} \sim B_{\infty}^{n} \cap \sqrt{p} B_{2}^{n}
$$

Floating Bodies

Floating body associated to symmetric random vector X in \mathbb{R}^{n} :

$$
K_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{P}(\langle X, t\rangle \geq 1) \leq \exp (-p)\right\}, \quad p \geq 1
$$

Polar body of $T \subset \mathbb{R}^{n}$:

$$
T^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle t, x\rangle \leq 1 \text { for every } t \in T\right\}
$$

- If X is standard Gaussian in \mathbb{R}^{n} then

$$
K_{p}(X) \sim \frac{1}{\sqrt{p}} B_{2}^{n} \quad \text { and } \quad\left(K_{p}(X)\right)^{\circ} \sim \sqrt{p} B_{2}^{n}
$$

- If $X=\mathcal{E}$ is standard Rademacher in \mathbb{R}^{n} then

$$
K_{p}(\mathcal{E}) \sim \operatorname{conv}\left(B_{1}^{n} \cup(1 / \sqrt{p}) B_{2}^{n}\right) \quad \text { and } \quad\left(K_{p}(\mathcal{E})\right)^{\circ} \sim B_{\infty}^{n} \cap \sqrt{p} B_{2}^{n}
$$

In both cases, for $p=\alpha \log (e N / n)$, with high probability

$$
c\left(K_{p}(X)\right)^{\circ} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

Does this inclusion extend to more general random vectors?

Assumptions on X

For some norm $\|\cdot\|$ on \mathbb{R}^{n}, assume that the symmetric random vector X satisfies

- the small ball condition

$$
\mathbb{P}(|\langle X, t\rangle| \geq \gamma\|t\|) \geq \delta \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some constants $\gamma, \delta>0$.

- the L_{r} condition

$$
\left(\mathbb{E}|\langle X, t\rangle|^{r}\right)^{1 / r} \leq L\|t\| \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some $r>0$ and some constant $L>0$.

Assumptions on X

For some norm $\|\cdot\|$ on \mathbb{R}^{n}, assume that the symmetric random vector X satisfies

- the small ball condition

$$
\mathbb{P}(|\langle X, t\rangle| \geq \gamma\|t\|) \geq \delta \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some constants $\gamma, \delta>0$.

- the L_{r} condition

$$
\left(\mathbb{E}|\langle X, t\rangle|^{r}\right)^{1 / r} \leq L\|t\| \quad \text { for all } t \in \mathbb{R}^{n}
$$

for some $r>0$ and some constant $L>0$.

Note that assumption

- allows very heavy-tailed random vectors
- does not require independence of the entries of X
- does not require isotropic random vectors X

Main Theorem

Theorem (Guédon, Krahmer, Kümmerle, Mendelson, R 2019)

 Let X be a symmetric random vector that satisfies the assumption with respect to a norm $\|\cdot\|$ and some $\delta, \gamma, r>0$. Let $0<\alpha<1$ and set $p=\alpha \log (e N / n)$. If$$
N \geq c_{0} n \quad \text { for } c_{0}=c_{0}(\alpha, \gamma, \delta, r, L)
$$

then with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
c_{2}\left(K_{p}(X)\right)^{\circ} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

where c_{1} and c_{2} are absolute constants.

Main Theorem

Theorem (Guédon, Krahmer, Kümmerle, Mendelson, R 2019)

Let X be a symmetric random vector that satisfies the assumption with respect to a norm $\|\cdot\|$ and some $\delta, \gamma, r>0$. Let $0<\alpha<1$ and set $p=\alpha \log (e N / n)$. If

$$
N \geq c_{0} n \quad \text { for } c_{0}=c_{0}(\alpha, \gamma, \delta, r, L)
$$

then with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
c_{2}\left(K_{p}(X)\right)^{\circ} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

where c_{1} and c_{2} are absolute constants.
Recovers or improves previous results

- X Gaussian or subgaussian (as discussed)
- X isotropic log-concave (Dafnis, Giannopoulos, Tsolomitis 2009)
- X with independent coordinates satisfying a small ball condition (Krahmer, Kümmerle, R 2018; Guédon, Litvak, Tatarko 2018; Mendelson 2019)

Example: q-stable random vectors

X : q-stable random vector, i.e., with independent q-stable entries $(1 \leq q<2)$

For $1 \leq q<2$ a standard q-stable random variable ξ is defined via its characteristic function

$$
\mathbb{E}[\exp (i t \xi)]=\exp \left(-|t|^{q} / 2\right) \quad \text { for all } t \in \mathbb{R}
$$

Example: q-stable random vectors

X : q-stable random vector, i.e., with independent q-stable entries $(1 \leq q<2)$
For $1 \leq q<2$ a standard q-stable random variable ξ is defined via its characteristic function

$$
\mathbb{E}[\exp (i t \xi)]=\exp \left(-|t|^{q} / 2\right) \quad \text { for all } t \in \mathbb{R}
$$

Recall:
$-\sup _{u>0} u^{q} \mathbb{P}(|\xi|>u) \leq C_{q}$, and $\mathbb{P}(|\xi|>u) \geq c_{q} / u^{q}$ for $u \geq M_{q}$.

- If ξ_{1}, \ldots, ξ_{n} are independent copies of ξ then $\sum_{i=1}^{n} t_{i} \xi_{i}$ has the same distribution as $\|t\|_{q} \xi$ for all $t \in \mathbb{R}^{n}$ (stability property)
$q=1$: Cauchy variable (expectation does not exist)

Theorem for q-stable random vectors

Theorem
Let X be a q-stable random vector on \mathbb{R}^{n} for some $1 \leq q<2$ and let X_{1}, \ldots, X_{N} be independent copies of X. Then for $0<\alpha<1$ and $N \geq c_{0}(\alpha, q) n$, with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
c_{2}(\alpha, q)\left(\frac{N}{n}\right)^{\alpha / q} B_{q^{\prime}}^{n} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

where $1 / q+1 / q^{\prime}=1$.
In particular, if X is a Cauchy random vector $(q=1)$, then with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$

$$
c_{3}(\alpha)\left(\frac{N}{n}\right)^{\alpha} B_{\infty}^{n} \subset \operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right)
$$

$K_{p}(X)$ as L_{p}-centroid body

For X with sufficiently many moments

$$
B\left(L_{p}(X)\right):=\left\{t \in \mathbb{R}^{n}:\left(\mathbb{E}|\langle X, t\rangle|^{p}\right)^{1 / p} \leq 1\right\}
$$

L_{p}-centroid body

$$
Z_{p}(X):=B_{p}(X)^{\circ}
$$

$K_{p}(X)$ as L_{p}-centroid body

For X with sufficiently many moments

$$
B\left(L_{p}(X)\right):=\left\{t \in \mathbb{R}^{n}:\left(\mathbb{E}|\langle X, t\rangle|^{p}\right)^{1 / p} \leq 1\right\}
$$

L_{p}-centroid body

$$
Z_{p}(X):=B_{p}(X)^{\circ}
$$

If X satisfies the regularity condition

$$
\|\langle t, X\rangle\|_{L_{2 q}} \leq L\|\langle t, X\rangle\|_{L_{q}} \quad \text { for all } t \in \mathbb{R}^{n} \text { and all } q \geq 2
$$

then (first part consequence of Markov's inequality)

$$
e^{-1} B\left(L_{p}(X)\right) \subset K_{p}(X) \subset 2 B\left(L_{c p}(X)\right)
$$

Log-concave random vectors

Theorem
Let X be a symmetric logarithmically concave random vector. Let $0<\alpha<1$, set $N \geq c_{0}(\alpha) n$ and put $p=\alpha \log (e N / n)$. Then, with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
\operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right) \supset c_{2}(\alpha) Z_{p}(X)
$$

Improvement over probability estimate due to Dafnis, Giannopolous, Tsolomitis (2009):

$$
\begin{equation*}
1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)-\mathbb{P}\left(\left\|\Gamma: \ell_{2}^{n} \rightarrow \ell_{2}^{N}\right\| \geq c \sqrt{N}\right) \tag{1}
\end{equation*}
$$

where $\Gamma=\left(X_{1}|\cdots| X_{N}\right)^{T}$. (In case of independent entries (1) is implied by Litvak, Pajor, Rudelson, Tomczak-Jaegermann 2005.)

Independent entries satisfying small ball assumption

Theorem (Guédon, Litvak, Tatarko 2018)
Let x be a symmetric random variable satisfying $\mathbb{E} x^{2}=1$, let x_{1}, \ldots, x_{n} to be independent copies of x and put $X=\left(x_{i}\right)_{i=1}^{n}$. If there are constants $\gamma, \delta>0$ such that $\mathbb{P}(|x| \geq \gamma) \geq \delta$, then for $N \geq c_{0} n$, with probability at least $1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
\operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right) \supset c_{2}\left(B_{\infty}^{n} \cap \sqrt{\log (e N / n)} B_{2}^{n}\right)
$$

Here c_{0} and c_{2} depend on α, γ and δ, and c_{1} is an absolute constant.

Unconditional random vectors

A random vector $X=\left(x_{i}\right)_{i=1}^{n}$ is unconditional if for every vector $\left(\varepsilon_{i}\right)_{i=1}^{n} \in\{-1,1\}^{n},\left(x_{i}\right)_{i=1}^{n}$ has the same distribution as $\left(\varepsilon_{i} x_{i}\right)_{i=1}^{n}$.
Theorem
Let X be an unconditional random vector that satisfies the small-ball condition with constants γ and δ. Then, for any $p>c_{0}(\delta)=4 \log (8 / \delta)+\log (4)$,

$$
K_{p}(X) \subset \frac{c(\delta)}{\gamma} K_{p}(\mathcal{E}) \sim \frac{c(\delta)}{\gamma}\left(B_{\infty}^{n} \cap \sqrt{\log (e N / n)} B_{2}^{n}\right)
$$

In particular, if X satisfies our assumption and
$N \geq c_{0}(\alpha, \gamma, \delta, r, L) n$, then with probability at least
$1-2 \exp \left(-c_{1} N^{1-\alpha} n^{\alpha}\right)$,

$$
\operatorname{absconv}\left(X_{1}, \ldots, X_{N}\right) \supset c^{\prime}(\delta) \gamma\left(B_{\infty}^{n} \cap \sqrt{\log (e N / n)} B_{2}^{n}\right)
$$

Implication for compressive sensing

Compressive sensing problem:
Recover an (approximately) s-sparse vector $x \in \mathbb{R}^{N}$, i.e.,

$$
\|x\|_{0}=\#\left\{\ell: x_{\ell} \neq 0\right\} \leq s
$$

from n linear noisy measurements

$$
y=A x+w \quad \text { with } A \in \mathbb{R}^{n \times N} \quad \text { where } n \ll N
$$

Implication for compressive sensing

Compressive sensing problem:
Recover an (approximately) s-sparse vector $x \in \mathbb{R}^{N}$, i.e.,

$$
\|x\|_{0}=\#\left\{\ell: x_{\ell} \neq 0\right\} \leq s
$$

from n linear noisy measurements

$$
y=A x+w \quad \text { with } A \in \mathbb{R}^{n \times N} \quad \text { where } n \ll N .
$$

Recovery via noise-constrained ℓ_{1}-minimization

$$
\min _{z}\|z\|_{1} \quad \text { subject to }\|A z-y\|_{2} \leq \eta .
$$

Implication for compressive sensing

Compressive sensing problem:
Recover an (approximately) s-sparse vector $x \in \mathbb{R}^{N}$, i.e.,

$$
\|x\|_{0}=\#\left\{\ell: x_{\ell} \neq 0\right\} \leq s
$$

from n linear noisy measurements

$$
y=A x+w \quad \text { with } A \in \mathbb{R}^{n \times N} \quad \text { where } n \ll N .
$$

Recovery via noise-constrained ℓ_{1}-minimization

$$
\min _{z}\|z\|_{1} \quad \text { subject to }\|A z-y\|_{2} \leq \eta .
$$

If $\|w\|_{2} \leq \eta$ for known η and A is a draw of a Gaussian random matrix with $n \sim s \log (e N / s)$ then with high probability the minimizer x^{\sharp} satisfies

$$
\left\|x-x^{\sharp}\right\|_{1} \lesssim \sigma_{s}(x)_{1}+\eta \sqrt{\frac{s}{n}},
$$

where $\sigma_{s}(x)_{1}=\inf _{z:\|z\|_{0} \leq s}\|x-z\|_{1}$.

Noise-blind compressive sensing

What if a good upper bound η for the noise vector w is not known?

Noise-blind compressive sensing

What if a good upper bound η for the noise vector w is not known?
Recovery of x from $y=A x+w$ via equality-constrained ℓ_{1}-minimization

$$
\begin{equation*}
\min _{z}\|z\|_{1} \quad \text { subject to } A z=y . \tag{2}
\end{equation*}
$$

Noise-blind compressive sensing

What if a good upper bound η for the noise vector w is not known?
Recovery of x from $y=A x+w$ via equality-constrained
ℓ_{1}-minimization

$$
\begin{equation*}
\min _{z}\|z\|_{1} \quad \text { subject to } A z=y \tag{2}
\end{equation*}
$$

Analysis based on

- Null space property of A : For some $\rho \in(0,1)$ and for all $v \in \operatorname{ker} A \backslash\{0\}$ and all $S \subset\{1, \ldots, N\}, \# S=s$

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1} .
$$

Satisfied for many random matrices if $n \sim \rho^{-2} s \log (e N / s)$.

- ℓ_{1}-quotient property of A with respect to norm $\|w\|$: For every $w \in \mathbb{R}^{n}$ there exists a vector $v \in \mathbb{R}^{N}$ such that $A v=w$ and

$$
\|v\|_{1} \leq L^{-1}\|w\|
$$

If A satisfies both properties then minimizer x^{\sharp} of (2) satisfies

$$
\left\|x^{\sharp}-x\right\|_{1} \lesssim \sigma_{s}(x)_{1}+\|w\|
$$

The ℓ_{1}-quotient property for random matrices

Let $\|\cdot\|$ be the gauge norm associated to $\left(K_{p}(X)\right)^{\circ}$, i.e.,

$$
\|x\|_{p}=\inf \left\{t>0: x \in t\left(K_{p}(X)\right)^{\circ}\right\}
$$

Set $A=\left(X_{1}|\cdots| X_{N}\right)$ where X_{1}, \ldots, X_{N} are independent copies of a random vector X satisfying our (weak) assumptions.
Main result: A satisfies ℓ_{1}-quotient property w.r.t. $\|\mid \cdot\|_{p}$ for $p=\alpha \log (e N / n)$ with probability at least $1-2 \exp \left(-c N^{1-\alpha} n^{\alpha}\right)$.

The ℓ_{1}-quotient property for random matrices

Let $\|\cdot\|$ be the gauge norm associated to $\left(K_{p}(X)\right)^{\circ}$, i.e.,

$$
\|x\|_{p}=\inf \left\{t>0: x \in t\left(K_{p}(X)\right)^{\circ}\right\} .
$$

Set $A=\left(X_{1}|\cdots| X_{N}\right)$ where X_{1}, \ldots, X_{N} are independent copies of a random vector X satisfying our (weak) assumptions.
Main result: A satisfies ℓ_{1}-quotient property w.r.t. $\|\mid \cdot\|_{p}$ for $p=\alpha \log (e N / n)$ with probability at least $1-2 \exp \left(-c N^{1-\alpha} n^{\alpha}\right)$.
Example: If X is a standard Gaussian random vector or a vector with independent student t-distributed random variables with $d=2 \log (N)$ degrees of freedom then for $y=A x+w$ the minimizer x^{\sharp} of equality-constrained ℓ_{1}-minimization satisfies

$$
\left\|x^{\sharp}-x\right\|_{1} \lesssim \sigma_{s}(x)_{1}+\sqrt{\log (e N / n)}\|w\|_{2} \sim \sigma_{s}(x)_{1}+\|w\|_{2} \sqrt{\frac{s}{n}}
$$

Error bound involves true noise-level $\|w\|_{2}$ instead of upper estimate η and reconstruction procedure does not require any knowledge about $\|w\|_{2}$.

Proof method of main theorem

Mendelson's small ball method:

- By duality need to prove a high probability lower bound

$$
\inf _{t \in \partial K_{p}(X)}\|\Gamma t\|_{\infty} \geq c, \quad \text { where } \Gamma=\left(X_{1} \mid \ldots, X_{N}\right)^{T}
$$

Proof method of main theorem

Mendelson's small ball method:

- By duality need to prove a high probability lower bound

$$
\inf _{t \in \partial K_{p}(X)}\|\Gamma t\|_{\infty} \geq c, \quad \text { where } \Gamma=\left(X_{1} \mid \ldots, X_{N}\right)^{T}
$$

- Show that with high probability the number $\#\left\{i:\left\langle X_{i}, t\right\rangle \geq 1\right\}$ is high for each individual t.

Proof method of main theorem

Mendelson's small ball method:

- By duality need to prove a high probability lower bound

$$
\inf _{t \in \partial K_{p}(X)}\|\Gamma t\|_{\infty} \geq c, \quad \text { where } \Gamma=\left(X_{1} \mid \ldots, X_{N}\right)^{T}
$$

- Show that with high probability the number $\#\left\{i:\left\langle X_{i}, t\right\rangle \geq 1\right\}$ is high for each individual t.
- Extend to a net of $\partial K_{p}(X)$ by union bound
- Uniformly bound local variations $\#\left\{i:\left|\left\langle X_{i}, t-\pi t\right\rangle\right| \geq 1 / 2\right\}$

Thanks very much for your attention!

