Convergence of symmetrization processes

Gabriele Bianchi

Università di Firenze

AGA IV, San Petersburg, July 2019

joint research with R.J. Gardner and P. Gronchi

Introduction

Let

- H be an hyperplane
- \diamond_{H} be Steiner or Minkowski symmetrization wrt H

It is well known that there exist sequences $\left(H_{m}\right)$ of hyperplanes such that for each convex body K

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \cdots \diamond_{H_{1}} K\right) \rightarrow \text { ball. }
$$

Introduction

Let

- H be an hyperplane
- \diamond_{H} be Steiner or Minkowski symmetrization wrt H

It is well known that there exist sequences $\left(H_{m}\right)$ of hyperplanes such that for each convex body K

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \cdots \diamond_{H_{1}} K\right) \rightarrow \text { ball. }
$$

3 ingredients:

- type of symmetrization \diamond_{H}
- sequence of subspaces $\left(H_{m}\right)$ (and their dimension)
- class of subset of \mathbb{R}^{n} on which the symmetrization operates

Introduction

Let

- H be an hyperplane
- ∇_{H} be Steiner or Minkowski symmetrization wrt H

It is well known that there exist sequences $\left(H_{m}\right)$ of hyperplanes such that for each convex body K

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \cdots \diamond_{H_{1}} K\right) \rightarrow \text { ball. }
$$

3 ingredients:

- type of symmetrization \diamond_{H}
- sequence of subspaces $\left(H_{m}\right)$ (and their dimension)
- class of subset of \mathbb{R}^{n} on which the symmetrization operates

Interested in studying this process for different symmetrizations, classes of sets and to understand more about which sequences are "rounding"

1) i-symmetrizations and classes of sets

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let $H \subset \mathbb{R}^{n}$ be linear subspace of dimension i.

1) i-symmetrizations and classes of sets

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let $H \subset \mathbb{R}^{n}$ be linear subspace of dimension i.

i-symmetrization

$$
\text { A map } \quad \diamond_{H}: \mathcal{E} \rightarrow \mathcal{E}_{H}
$$

where

- $\mathcal{E}=\{$ convex bodies $\}$ or $\mathcal{E}=\{$ compact sets $\}$,
- $\mathcal{E}_{H}=\{$ elements of \mathcal{E} which are symmetric wrt $H\}$

1) i-symmetrizations and classes of sets

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let $H \subset \mathbb{R}^{n}$ be linear subspace of dimension i.

i-symmetrization

$$
\text { A map } \quad \nabla_{H}: \mathcal{E} \rightarrow \mathcal{E}_{H}
$$

where

- $\mathcal{E}=\{$ convex bodies $\}$ or $\mathcal{E}=\{$ compact sets $\}$,
- \mathcal{E} which symmetries

Let R_{H} denote reflection wrt H

- K is reflection symmetric wrt H if

$$
R_{H} K=K
$$

- K is rotationally symmetric wrt H if $\forall x \in H$

$$
K \cap\left(H^{\perp}+x\right)=(n-i) \text {-dimensional ball centred at } x
$$

2) universal sequences

Coupier, Davydov (2014)

$\left(H_{m}\right)$ is called \diamond-universal sequence in the class \mathcal{E} if

$$
\forall K \in \mathcal{E}, \quad \forall j \in \mathbb{N} \quad\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{j}} K\right) \rightarrow \text { ball, }
$$

(converges to ball independently of the starting index)

2) universal sequences

Coupier, Davydov (2014)

$\left(H_{m}\right)$ is called \diamond-universal sequence in the class \mathcal{E} if

$$
\forall K \in \mathcal{E}, \quad \forall j \in \mathbb{N} \quad\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{j}} K\right) \rightarrow \text { ball, }
$$

(converges to ball independently of the starting index)
We will deal only with universal sequences

literature

- results of probabilistic type: Mani-Levitska, Volčič, Van Shaftingen, Fortier, Burchard, Coupier and Davidov

literature

- results of probabilistic type: Mani-Levitska, Volčič, Van Shaftingen, Fortier, Burchard, Coupier and Davidov
- speed of convergence to sphere: Bourgain, Lindestrauss, Milman, Klartag, Florentin and Segal

Five symmetrizations

- $i=n-1$; Reflection symmetric
- Steiner symm. $S_{H} K$

Five symmetrizations

- $i=n-1$; Reflection symmetric
- Steiner symm. $S_{H} K$
- Any i; Reflection symmetric
- Minkowski symm. $M_{H} K=\frac{1}{2} K+\frac{1}{2} R_{H} K$
- Fiber symm. $F_{H} K=\bigcup_{x \in H}\left(\frac{1}{2}\left(K \cap\left(H^{\perp}+x\right)\right)+\frac{1}{2} R_{H}\left(K \cap\left(H^{\perp}+x\right)\right)\right)$

McMullen

Five symmetrizations

- $i=n-1$; Reflection symmetric
- Steiner symm. $S_{H} K$
- Any $i ;$ Reflection symmetric
- Minkowski symm. $M_{H} K=\frac{1}{2} K+\frac{1}{2} R_{H} K$
- Fiber symm. $F_{H} K=\bigcup_{x \in H}\left(\frac{1}{2}\left(K \cap\left(H^{\perp}+x\right)\right)+\frac{1}{2} R_{H}\left(K \cap\left(H^{\perp}+x\right)\right)\right)$

McMullen

- Any i; Rotationally symmetric
- Schwarz symm. $S_{H} K$: sections of K orthogonal to H are transformed in balls centered in H and with same $(n-i)$-volume
- Minkowski-Blaschke symm. $\bar{M}_{H} K$:

$$
h_{\bar{M}_{H} K}(u)=\frac{1}{\mathcal{H}^{n-i}\left(S^{n-1} \cap\left(H^{\perp}+u\right)\right)} \int_{S^{n-1} \cap\left(H^{\perp}+u\right)} h_{K}(v) d v
$$

Five symmetrizations

- $i=n-1$; Reflection symmetric
- Steiner symm. $S_{H} K$
- Any i; Reflection symmetric
- Minkowski symm. $M_{H} K=\frac{1}{2} K+\frac{1}{2} R_{H} K$
- Fiber symm. $F_{H} K=\bigcup_{x \in H}\left(\frac{1}{2}\left(K \cap\left(H^{\perp}+x\right)\right)+\frac{1}{2} R_{H}\left(K \cap\left(H^{\perp}+x\right)\right)\right)$ McMullen
- Any i; Rotationally symmetric
- Schwarz symm. $S_{H} K$: sections of K orthogonal to H are transformed in balls centered in H and with same $(n-i)$-volume
- Minkowski-Blaschke symm. $\bar{M}_{H} K$:

$$
h_{\bar{M}_{H} K}(u)=\frac{1}{\mathcal{H}^{n-i}\left(S^{n-1} \cap\left(H^{\perp}+u\right)\right)} \int_{S^{n-1} \cap\left(H^{\perp}+u\right)} h_{K}(v) d v
$$

- many more examples: i-symmetrization is a very general definition

A negative example

Let $\diamond=$ Steiner.
There exists a convex body $K \subset \mathbb{R}^{2}$ and a sequence $\left(H_{m}\right)$ of lines, dense in S^{1}, such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right) \quad \text { does not converge at all, }
$$

里
Bianchi, Klain, Lutwak, Yang and Zhang (2011)

universal sequences are indeed universal

Coupier and Davidov (2014)

Let $i=n-1$ and let the class be \{convex bodies $\}$.
A sequence is Minkowski-universal if and only if it is Steiner-universal.

Coupier and Davidov (2014)

Let $i=n-1$ and let the class be \{convex bodies $\}$.
A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem

Let $1 \leq i \leq n-1$ and let the class be \{convex bodies\}. Then:

- A sequence is Minkowski-universal if and only if it is Fiber-universal
- A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal

Coupier and Davidov (2014)

Let $i=n-1$ and let the class be \{convex bodies $\}$.
A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem

Let $1 \leq i \leq n-1$ and let the class be \{convex bodies\}. Then:

- A sequence is Minkowski-universal if and only if it is Fiber-universal
- A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal

Theorem

Let $1 \leq i \leq n-1$ and let the class be \{convex bodies\}.
Let \diamond_{H} be a i-symmetrization (with reflection symmetry) which is

- monotone wrt inclusion,
- identity on sets which are already H -symmetric,
- invariant wrt translations orthogonal to H of H-symmetric sets Then, a sequence is \diamond-universal if and only if it is Minkowski-universal

Is it more difficult to "round" compact sets than convex bodies?

Rounding compact sets

Compact sets need not become convex

There exist compact set $C \subset \mathbb{R}^{2}$ and a sequence (H_{m}) of lines "very close to being dense in $S^{1 "}$ such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { a non-convex set. }
$$Bianchi, Burchard, Gronchi and Volcic (2012)

Rounding compact sets

Compact sets need not become convex

There exist compact set $C \subset \mathbb{R}^{2}$ and a sequence (H_{m}) of lines "very close to being dense in $S^{1 "}$ such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { a non-convex set. }
$$

\square Bianchi, Burchard, Gronchi and Volcic (2012)

Theorem

Let $1 \leq i \leq n-1$ and let \diamond be Steiner or Minkowski or Schwarz. A sequence is \diamond-universal in \{compact sets\} IFF it is \diamond-universal in \{convex bodies\}

constructing universal sequence / how to generate $O(n)$ via finitely many i-reflections

sequences built from a finite alphabet

- Assume that each subspace in the sequence $\left(H_{m}\right)$ belongs to a finite set of subspaces $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$
Example: $\left(H_{m}\right)=F_{3}, F_{3}, F_{1}, F_{4}, F_{2}, F_{3}, F_{1}, F_{3}, F_{1}, F_{1}, F_{4}, \ldots$

sequences built from a finite alphabet

- Assume that each subspace in the sequence $\left(H_{m}\right)$ belongs to a finite set of subspaces $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$
Example: $\left(H_{m}\right)=F_{3}, F_{3}, F_{1}, F_{4}, F_{2}, F_{3}, F_{1}, F_{3}, F_{1}, F_{1}, F_{4}, \ldots$

Klain (2012)

Let \diamond be Steiner and let K be a convex body.
The sequence $\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right)$ always converges.
The limit body is symmetric wrt each F_{r} which appears infinitely many times in $\left(H_{m}\right)$.

sequences built from a finite alphabet

- Assume that each subspace in the sequence $\left(H_{m}\right)$ belongs to a finite set of subspaces $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$
Example: $\left(H_{m}\right)=F_{3}, F_{3}, F_{1}, F_{4}, F_{2}, F_{3}, F_{1}, F_{3}, F_{1}, F_{1}, F_{4}, \ldots$

Klain (2012)

Let \diamond be Steiner and let K be a convex body.
The sequence $\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right)$ always converges.
The limit body is symmetric wrt each F_{r} which appears infinitely many times in $\left(H_{m}\right)$.

圊 Bianchi, Burchard, Gronchi and Volcic (2013),
Result extended to Minkowski symmetrization and to compacts sets

sequences built from a finite alphabet 2

Theorem

Same conclusion hold for all 5 symmetrizations: Fiber, Schwarz and Minkowski-Blaschke

sequences built from a finite alphabet 2

Theorem

Same conclusion hold for all 5 symmetrizations: Fiber, Schwarz and Minkowski-Blaschke

Theorem

Same conclusion holds for any \diamond (with reflection symmetry) which satisfies the following properties:
(1) monotone wrt inclusion
(2) identity on sets which are already H -symmetric
(3) invariant wrt translations orthogonal to H of H -symmetric sets
(9) continuous

Create universal sequences using finite alphabet

- Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$ be a finite set of i-dimensional subspaces in \mathbb{R}^{n}
- Let K be a convex body

Create universal sequences using finite alphabet

- Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$ be a finite set of i-dimensional subspaces in \mathbb{R}^{n}
- Let K be a convex body

Problem 1

For which choices of \mathcal{F} does the reflection symmetry of K wrt each $F_{r} \in \mathcal{F}$ forces K to be a ball?

Create universal sequences using finite alphabet

- Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{j}\right\}$ be a finite set of i-dimensional subspaces in \mathbb{R}^{n}
- Let K be a convex body

Problem 1

For which choices of \mathcal{F} does the reflection symmetry of K wrt each $F_{r} \in \mathcal{F}$ forces K to be a ball?

Problem 1 rephrased

For which choices of \mathcal{F} the closure of the subgroup of $O(n)$ generated by $R_{F_{1}}, \ldots, R_{F_{j}}$ acts transitively on S^{n-1} ?

Create universal sequences using finite alphabet

Problem 2

For which choices of \mathcal{F} does the rotational symmetry of K wrt each $F_{r} \in \mathcal{F}$ forces K to be a ball?

An IFF answer to Problem 2

Theorem

Let $K \subset \mathbb{R}^{n}$ be a convex body and let F_{1}, \ldots, F_{j} be subspaces in \mathbb{R}^{n} of dimension $\leq n-2$.
Being radially symmetric wrt each F_{r} forces K to be a ball IFF the following conditions hold
(1) $F_{1}^{\perp}+\cdots+F_{j}^{\perp}=\mathbb{R}^{n}$
(2) $\left\{F_{1}^{\perp}, \ldots, F_{j}^{\perp}\right\}$ cannot be partitioned into two mutually orthogonal nonempty subsets
F_{1}, \ldots, F_{j} need not have equal dimension

Partial constructive answers to Problem 1

(implicit) answer when F_{1}, \ldots, F_{j} are hyperplanes:

Eaton and Perlman (1977)國 Burchard, Chambers and Dranovski (2017),

Partial constructive answers to Problem 1

(implicit) answer when F_{1}, \ldots, F_{j} are hyperplanes:
Eaton and Perlman (1977)
國 Burchard, Chambers and Dranovski (2017),

Theorem

Description of how to construct sets \mathcal{F} of i-dimensional subspaces which "force full radial symmetry" and consist of

$$
\left\lceil\frac{n}{\min \{i, n-i\}}\right\rceil+1
$$

elements.

Partial constructive answers to Problem 1

Theorem

Let $2 \leq i \leq n / 2$, let $j \geq 3$, and let $F_{m} \in \mathcal{G}(n, i), m=1, \ldots, j$, be such that
(i) F_{1}, F_{2}, and F_{3} "form irrational angles";
(ii) $F_{1}+\cdots+F_{j}=\mathbb{R}^{n}$.
(iii) for each $m=3, \ldots, j-1$,

$$
F_{m+1} \cap\left(F_{1}+\cdots+F_{m}\right)^{\perp}=\{0\} ;
$$

Then the reflection symmetries wrt these subspaces "force full radial symmetry"

