Functions with isotropic sections

Christos Saroglou

Department of Mathematics University of Ioannina

July 6, 2019

Euler Institute

Christos Saroglou Functions with isotropic sections

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \to \mathbb{R}$, the restriction $g|_{S^{n-1}\cap u^{\perp}}$ onto $S^{n-1}\cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g?

 Is it true that g is almost everywhere equal to a constant on the set U[⊥]?

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \to \mathbb{R}$, the restriction $g|_{S^{n-1}\cap u^{\perp}}$ onto $S^{n-1}\cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g?

- Is it true that g is almost everywhere equal to a constant on the set U^{\perp} ?
- (Myroschnychenko, RYabogin, S.) True if $U = S^{n-1}$.
- Not true in general!

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \to \mathbb{R}$, the restriction $g|_{S^{n-1}\cap u^{\perp}}$ onto $S^{n-1}\cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g?

- Is it true that g is almost everywhere equal to a constant on the set U^{\perp} ?
- (Myroschnychenko, RYabogin, S.) True if $U = S^{n-1}$.
- Not true in general!

Theorem

Let U be an open subset of \mathbb{S}^{n-1} , that does not contain U^{\perp} . There exists a continuous function $g: \mathbb{S}^{n-1} \to \mathbb{R}$, such that for any $u \in U$, $g|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic, but g is not constant on U^{\perp} .

Funk and cosine transform of a function $\zeta : \mathbb{S}^{n-1} \to \mathbb{R}$:

$$\mathcal{R}(\zeta)(u) = \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1},$$
$$\mathcal{C}(\zeta)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1}.$$

Theorem

Let U be an open subset of \mathbb{S}^{n-1} , that does not contain U^{\perp} . There exists a continuous function $g : \mathbb{S}^{n-1} \to \mathbb{R}$, such that for any $u \in U$, $g|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic, but g is not constant on U^{\perp} .

Funk and cosine transform of a function $\zeta : \mathbb{S}^{n-1} \to \mathbb{R}$:

$$\mathcal{R}(\zeta)(u) = \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1},$$
$$\mathcal{C}(\zeta)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1}.$$

Results

Funk and cosine transform of a function $\zeta : \mathbb{S}^{n-1} \to \mathbb{R}$:

$$\mathcal{R}(\zeta)(u) = \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1},$$
$$\mathcal{C}(\zeta)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1}$$

Theorem

Let $n \geq 3$, U be an open subset of \mathbb{S}^{n-1} and $g : U \to \mathbb{R}$ be an even, bounded, measurable function. If for almost every $u \in U$, $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic, then $C(g)|_U = c + \langle a, \cdot \rangle$ and $\mathcal{R}(g)|_U = c'$, almost everywhere in U, for some fixed constants $c, c' \in \mathbb{R}$ and for some fixed vector $a \in \mathbb{R}^n$.

Results

Funk and cosine transform of a function $\zeta : \mathbb{S}^{n-1} \to \mathbb{R}$:

$$\mathcal{R}(\zeta)(u) = \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1},$$

$$C(\zeta)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle| \zeta(x) dx, \qquad u \in \mathbb{S}^{n-1}.$$

Theorem

Let $n \geq 3$, U be an open subset of \mathbb{S}^{n-1} and $g : U \to \mathbb{R}$ be an even, bounded, measurable function. If for almost every $u \in U$, $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic, then $C(g)|_U = c + \langle a, \cdot \rangle$ and $\mathcal{R}(g)|_U = c'$, almost everywhere in U, for some fixed constants $c, c' \in \mathbb{R}$ and for some fixed vector $a \in \mathbb{R}^n$.

• We may assume g > 0.

• Then C(g) is the support function of a zonoid Z(g).

- We may assume g > 0.
- Then C(g) is the support function of a zonoid Z(g).
- It suffices to prove that
 τ(Z(g), U) = {x ∈ bdZ(g) : ∃u ∈ U, ⟨x, u⟩ = h_{Z(g)}(u)} is
 contained in a sphere

- We may assume g > 0.
- Then C(g) is the support function of a zonoid Z(g).
- It suffices to prove that
 τ(Z(g), U) = {x ∈ bdZ(g) : ∃u ∈ U, ⟨x, u⟩ = h_{Z(g)}(u)} is
 contained in a sphere
- Recall that R(g) is proportional to the order 1 area measure of Z(g).

- We may assume g > 0.
- Then C(g) is the support function of a zonoid Z(g).
- It suffices to prove that
 τ(Z(g), U) = {x ∈ bdZ(g) : ∃u ∈ U, ⟨x, u⟩ = h_{Z(g)}(u)} is
 contained in a sphere
- Recall that R(g) is proportional to the order 1 area measure of Z(g).
- In general, $\frac{dS_i(Z(g),\cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^\perp} \cdots \int_{\mathbb{S}^{n-1} \cap u^\perp} \det(x_1,\ldots,x_{n-1})^2 g(x_1) \ldots g(x_i) dx_1 \ldots dx_{n-1}$

- We may assume g > 0.
- Then C(g) is the support function of a zonoid Z(g).
- It suffices to prove that
 τ(Z(g), U) = {x ∈ bdZ(g) : ∃u ∈ U, ⟨x, u⟩ = h_{Z(g)}(u)} is
 contained in a sphere
- Recall that R(g) is proportional to the order 1 area measure of Z(g).
- In general, $\frac{dS_i(Z(g),\cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \det(x_1,\ldots,x_{n-1})^2 g(x_1) \ldots g(x_i) dx_1 \ldots dx_{n-1}$

• In general,
$$\frac{dS_i(Z(g), \cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \det(x_1, \dots, x_{n-1})^2 g(x_1) \dots g(x_i) dx_1 \dots dx_{n-1}$$

•
$$g|_{\mathbb{S}^{n-1} \cap u^{\perp}} \text{ is isotropic if and only if } \frac{dS_{n-1}(Z(g), \cdot)}{dx} = c_n \left(\frac{dS_1(Z(g), \cdot)}{dx}\right)^{n-1}.$$

• In general,
$$\frac{dS_i(Z(g), \cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \det(x_1, \dots, x_{n-1})^2 g(x_1) \dots g(x_i) dx_1 \dots dx_{n-1}$$

•
$$g|_{\mathbb{S}^{n-1} \cap u^{\perp}} \text{ is isotropic if and only if } \frac{dS_{n-1}(Z(g), \cdot)}{dx} = c_n \left(\frac{dS_1(Z(g), \cdot)}{dx}\right)^{n-1}.$$

• With $c_n = 1$.

• In general,
$$\frac{dS_i(Z(g),\cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \det(x_1, \dots, x_{n-1})^2 g(x_1) \dots g(x_i) dx_1 \dots dx_{n-1}$$

•
$$g|_{\mathbb{S}^{n-1} \cap u^{\perp}} \text{ is isotropic if and only if}$$

$$\frac{dS_{n-1}(Z(g),\cdot)}{dx} = c_n \left(\frac{dS_1(Z(g),\cdot)}{dx}\right)^{n-1}.$$

• With $c_n = 1.$

• More precisely, it holds
$$\frac{dS_{n-1}(Z(g),\cdot)}{dx} \leq \left(\frac{dS_1(Z(g),\cdot)}{dx}\right)^{n-1}$$
, with equality if and only if $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic.

• In general,
$$\frac{dS_i(Z(g),\cdot)}{dx} = c_{n,i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \det(x_1, \dots, x_{n-1})^2 g(x_1) \dots g(x_i) dx_1 \dots dx_{n-1}$$

• $g|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic if and only if
 $\frac{dS_{n-1}(Z(g),\cdot)}{dx} = c_n \left(\frac{dS_1(Z(g),\cdot)}{dx}\right)^{n-1}$.
• With $c_n = 1$

• More precisely, it holds $\frac{dS_{n-1}(Z(g),\cdot)}{dx} \leq \left(\frac{dS_1(Z(g),\cdot)}{dx}\right)^{n-1}$, with equality if and only if $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic.

- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$: Eigenvalues of the matrix $(h_{ij} + h\delta_{ij})_{i,i=1}^{n-1}$ at u
- (Very old theorem) If K is smooth and all r_i are equal at some open neighbourhood U ⊆ Sⁿ⁻¹, then τ(K, U) is contained in a sphere.

- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$: Eigenvalues of the matrix $(h_{ij} + h\delta_{ij})_{i,j=1}^{n-1}$ at u
- (Very old theorem) If K is smooth and all r_i are equal at some open neighbourhood U ⊆ Sⁿ⁻¹, then τ(K, U) is contained in a sphere.

• Recall:
$$\frac{dS_1(Z(g),\cdot)}{dx} = (r_1 + \dots + r_{n-1})/(n-1) \text{ and }$$
$$\frac{dS_{n-1}(Z(g),\cdot)}{dx} = r_1 \dots r_{n-1}$$

- Radii of curvature of a smooth convex body K at u ∈ Sⁿ⁻¹: Eigenvalues of the matrix (h_{ij} + hδ_{ij})ⁿ⁻¹_{i,j=1} at u
- (Very old theorem) If K is smooth and all r_i are equal at some open neighbourhood U ⊆ Sⁿ⁻¹, then τ(K, U) is contained in a sphere.

• Recall:
$$\frac{dS_1(Z(g), \cdot)}{dx} = (r_1 + \dots + r_{n-1})/(n-1)$$
 and $\frac{dS_{n-1}(Z(g), \cdot)}{dx} = r_1 \dots r_{n-1}$

• Thus, $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic for all $u \in U$ if and only if $r_1 = \cdots = r_{n-1}$ everywhere in U. \Box

- Radii of curvature of a smooth convex body K at u ∈ Sⁿ⁻¹: Eigenvalues of the matrix (h_{ij} + hδ_{ij})ⁿ⁻¹_{i,j=1} at u
- (Very old theorem) If K is smooth and all r_i are equal at some open neighbourhood U ⊆ Sⁿ⁻¹, then τ(K, U) is contained in a sphere.

• Recall:
$$\frac{dS_1(Z(g), \cdot)}{dx} = (r_1 + \dots + r_{n-1})/(n-1)$$
 and $\frac{dS_{n-1}(Z(g), \cdot)}{dx} = r_1 \dots r_{n-1}$

• Thus, $g|_{\mathbb{S}^{n-1}\cap u^{\perp}}$ is isotropic for all $u \in U$ if and only if $r_1 = \cdots = r_{n-1}$ everywhere in U. \Box

- Take G to be a C[∞] function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w : \mathbb{S}^{n-1} \to \mathbb{R}$, such that $G(u) = C(w)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle | w(x) dx.$
- We can take w to be non-constant on U^{\perp} .

- Take G to be a C[∞] function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w : \mathbb{S}^{n-1} \to \mathbb{R}$, such that $G(u) = C(w)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle | w(x) dx.$
- We can take w to be non-constant on U^{\perp} .
- Then, C(w + c) is the support function of a zonoid Z, for some c > 0.

- Take G to be a C[∞] function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w : \mathbb{S}^{n-1} \to \mathbb{R}$, such that $G(u) = C(w)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle | w(x) dx.$
- We can take w to be non-constant on U^{\perp} .
- Then, C(w + c) is the support function of a zonoid Z, for some c > 0.
- Thus, h_Z is constant at U, hence the density of the area measure of order 1 is constant at U, so every restriction of w + c to u[⊥], u ∈ U is isotropic.

- Take G to be a C[∞] function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w : \mathbb{S}^{n-1} \to \mathbb{R}$, such that $G(u) = C(w)(u) = \int_{\mathbb{S}^{n-1}} |\langle x, u \rangle | w(x) dx.$
- We can take w to be non-constant on U^{\perp} .
- Then, C(w + c) is the support function of a zonoid Z, for some c > 0.
- Thus, h_Z is constant at U, hence the density of the area measure of order 1 is constant at U, so every restriction of w + c to u[⊥], u ∈ U is isotropic.

Theorem

Let K be a convex body in \mathbb{R}^n , $n \ge 3$, U be an open connected subset of \mathbb{S}^{n-1} and assume that the measure $S_1(K, \cdot)|_{\mathcal{B}(U)}$ is absolutely continuous. If for almost every direction $u \in U$ it holds

$$r_K^1(u) = \cdots = r_K^{n-1}(u),$$

then $\tau(K, U)$ is contained in a Euclidean sphere.

Thank you!!!!!!