Functions with isotropic sections

Christos Saroglou

Department of Mathematics University of Ioannina

July 6, 2019

Euler Institute

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \rightarrow \mathbb{R}$, the restriction $\left.g\right|_{S^{n-1} \cap u^{\perp}}$ onto $S^{n-1} \cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g ?

- Is it true that g is almost everywhere equal to a constant on the set U^{\perp} ?

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \rightarrow \mathbb{R}$, the restriction $\left.g\right|_{S^{n-1} \cap u^{\perp}}$ onto $S^{n-1} \cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g ?

- Is it true that g is almost everywhere equal to a constant on the set U^{\perp} ?
- (Myroschnychenko, RYabogin, S.) True if $U=S^{n-1}$.
- Not true in general!

Problem

Assume that for a measurable subset U of S^{n-1} and for an even bounded measurable function $g: S^{n-1} \rightarrow \mathbb{R}$, the restriction $\left.g\right|_{S^{n-1} \cap u^{\perp}}$ onto $S^{n-1} \cap u^{\perp}$ is isotropic, for almost all $u \in U$. What can be said about g ?

- Is it true that g is almost everywhere equal to a constant on the set U^{\perp} ?
- (Myroschnychenko, RYabogin, S.) True if $U=S^{n-1}$.
- Not true in general!

Results

Theorem

Let U be an open subset of \mathbb{S}^{n-1}, that does not contain U^{\perp}. There exists a continuous function $g: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that for any $u \in U,\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic, but g is not constant on U^{\perp}.

Funk and cosine transform of a function $\zeta: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$:

$$
\begin{array}{cl}
\mathcal{R}(\zeta)(u)=\int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) d x, & u \in \mathbb{S}^{n-1} \\
C(\zeta)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| \zeta(x) d x, & u \in \mathbb{S}^{n-1}
\end{array}
$$

Results

Theorem

Let U be an open subset of \mathbb{S}^{n-1}, that does not contain U^{\perp}. There exists a continuous function $g: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that for any $u \in U,\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic, but g is not constant on U^{\perp}.

Funk and cosine transform of a function $\zeta: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$:

$$
\begin{array}{cl}
\mathcal{R}(\zeta)(u)=\int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) d x, & u \in \mathbb{S}^{n-1} \\
C(\zeta)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| \zeta(x) d x, & u \in \mathbb{S}^{n-1}
\end{array}
$$

Results

Funk and cosine transform of a function $\zeta: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$:

$$
\begin{array}{cl}
\mathcal{R}(\zeta)(u)=\int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) d x, & u \in \mathbb{S}^{n-1} \\
C(\zeta)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| \zeta(x) d x, & u \in \mathbb{S}^{n-1}
\end{array}
$$

Theorem

Let $n \geq 3, U$ be an open subset of \mathbb{S}^{n-1} and $g: U \rightarrow \mathbb{R}$ be an even, bounded, measurable function. If for almost every $u \in U$, $\left.g\right|_{\S^{n-1} \cap u^{\perp}}$ is isotropic, then $\left.C(g)\right|_{u}=c+\langle a, \cdot\rangle$ and $\left.\mathcal{R}(g)\right|_{u}=c^{\prime}$, almost everywhere in U, for some fixed constants $c, c^{\prime} \in \mathbb{R}$ and for some fixed vector $a \in \mathbb{R}^{n}$.

Results

Funk and cosine transform of a function $\zeta: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$:

$$
\begin{array}{cl}
\mathcal{R}(\zeta)(u)=\int_{\mathbb{S}^{n-1} \cap u^{\perp}} \zeta(x) d x, & u \in \mathbb{S}^{n-1} \\
C(\zeta)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| \zeta(x) d x, & u \in \mathbb{S}^{n-1}
\end{array}
$$

Theorem

Let $n \geq 3, U$ be an open subset of \mathbb{S}^{n-1} and $g: U \rightarrow \mathbb{R}$ be an even, bounded, measurable function. If for almost every $u \in U$, $\left.g\right|_{\S^{n-1} \cap u^{\perp}}$ is isotropic, then $\left.C(g)\right|_{u}=c+\langle a, \cdot\rangle$ and $\left.\mathcal{R}(g)\right|_{u}=c^{\prime}$, almost everywhere in U, for some fixed constants $c, c^{\prime} \in \mathbb{R}$ and for some fixed vector $a \in \mathbb{R}^{n}$.

Proofs

- We may assume $g>0$.
- Then $C(g)$ is the support function of a zonoid $Z(g)$.

Proofs

- We may assume $g>0$.
- Then $C(g)$ is the support function of a zonoid $Z(g)$.
- It suffices to prove that
$\tau(Z(g), U)=\left\{x \in b d Z(g): \exists u \in U,\langle x, u\rangle=h_{Z(g)}(u)\right\}$ is contained in a sphere

Proofs

- We may assume $g>0$.
- Then $C(g)$ is the support function of a zonoid $Z(g)$.
- It suffices to prove that $\tau(Z(g), U)=\left\{x \in b d Z(g): \exists u \in U,\langle x, u\rangle=h_{Z(g)}(u)\right\}$ is contained in a sphere
- Recall that $\mathcal{R}(g)$ is proportional to the order 1 area measure of $Z(g)$.
- We may assume $g>0$.
- Then $C(g)$ is the support function of a zonoid $Z(g)$.
- It suffices to prove that
$\tau(Z(g), U)=\left\{x \in b d Z(g): \exists u \in U,\langle x, u\rangle=h_{Z(g)}(u)\right\}$ is contained in a sphere
- Recall that $\mathcal{R}(g)$ is proportional to the order 1 area measure of $Z(g)$.
- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$

Proofs

- We may assume $g>0$.
- Then $C(g)$ is the support function of a zonoid $Z(g)$.
- It suffices to prove that
$\tau(Z(g), U)=\left\{x \in b d Z(g): \exists u \in U,\langle x, u\rangle=h_{Z(g)}(u)\right\}$ is contained in a sphere
- Recall that $\mathcal{R}(g)$ is proportional to the order 1 area measure of $Z(g)$.
- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$

Proofs

- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$
- $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic if and only if $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=c_{n}\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}$.

Proofs

- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$
- $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic if and only if $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=c_{n}\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}$.
- With $c_{n}=1$.

Proofs

- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$
- $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic if and only if $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=c_{n}\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}$.
- With $c_{n}=1$.
- More precisely, it holds $\frac{d S_{n-1}(Z(g), \cdot)}{d x} \leq\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}$, with equality if and only if $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic.
- In general, $\frac{d S_{i}(Z(g), \cdot)}{d x}=$
$c_{n, i} \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \cdots \int_{\mathbb{S}^{n-1} \cap u^{\perp}} \operatorname{det}\left(x_{1}, \ldots, x_{n-1}\right)^{2} g\left(x_{1}\right) \ldots g\left(x_{i}\right) d x_{1} \ldots d x_{n-}$
- $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic if and only if

$$
\frac{d S_{n-1}(Z(g), \cdot)}{d x}=c_{n}\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}
$$

- With $c_{n}=1$.
- More precisely, it holds $\frac{d S_{n-1}(Z(g), \cdot)}{d x} \leq\left(\frac{d S_{1}(Z(g), \cdot)}{d x}\right)^{n-1}$, with equality if and only if $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic.

Proofs

- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$: Eigenvalues of the matrix $\left(h_{i j}+h \delta_{i j}\right)_{i, j=1}^{n-1}$ at u
- (Very old theorem) If K is smooth and all r_{i} are equal at some open neighbourhood $U \subseteq \mathbb{S}^{n-1}$, then $\tau(K, U)$ is contained in a sphere.
- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$: Eigenvalues of the matrix $\left(h_{i j}+h \delta_{i j}\right)_{i, j=1}^{n-1}$ at u
- (Very old theorem) If K is smooth and all r_{i} are equal at some open neighbourhood $U \subseteq \mathbb{S}^{n-1}$, then $\tau(K, U)$ is contained in a sphere.
- Recall: $\frac{d S_{1}(Z(g), \cdot)}{d x}=\left(r_{1}+\cdots+r_{n-1}\right) /(n-1)$ and $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=r_{1} \ldots r_{n-1}$
- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$: Eigenvalues of the matrix $\left(h_{i j}+h \delta_{i j}\right)_{i, j=1}^{n-1}$ at u
- (Very old theorem) If K is smooth and all r_{i} are equal at some open neighbourhood $U \subseteq \mathbb{S}^{n-1}$, then $\tau(K, U)$ is contained in a sphere.
- Recall: $\frac{d S_{1}(Z(g), \cdot)}{d x}=\left(r_{1}+\cdots+r_{n-1}\right) /(n-1)$ and $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=r_{1} \ldots r_{n-1}$
- Thus, $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic for all $u \in U$ if and only if $r_{1}=\cdots=r_{n-1}$ everywhere in $U . \square$

Proofs

- Radii of curvature of a smooth convex body K at $u \in \mathbb{S}^{n-1}$:

Eigenvalues of the matrix $\left(h_{i j}+h \delta_{i j}\right)_{i, j=1}^{n-1}$ at u

- (Very old theorem) If K is smooth and all r_{i} are equal at some open neighbourhood $U \subseteq \mathbb{S}^{n-1}$, then $\tau(K, U)$ is contained in a sphere.
- Recall: $\frac{d S_{1}(Z(g), \cdot)}{d x}=\left(r_{1}+\cdots+r_{n-1}\right) /(n-1)$ and $\frac{d S_{n-1}(Z(g), \cdot)}{d x}=r_{1} \ldots r_{n-1}$
- Thus, $\left.g\right|_{\mathbb{S}^{n-1} \cap u^{\perp}}$ is isotropic for all $u \in U$ if and only if $r_{1}=\cdots=r_{n-1}$ everywhere in $U . \square$
- Take G to be a C^{∞} function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that $G(u)=C(w)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| w(x) d x$.
- We can take w to be non-constant on U^{\perp}.
- Take G to be a C^{∞} function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that $G(u)=C(w)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| w(x) d x$.
- We can take w to be non-constant on U^{\perp}.
- Then, $C(w+c)$ is the support function of a zonoid Z, for some $c>0$.

The counterexample

- Take G to be a C^{∞} function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that $G(u)=C(w)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| w(x) d x$.
- We can take w to be non-constant on U^{\perp}.
- Then, $C(w+c)$ is the support function of a zonoid Z, for some $c>0$.
- Thus, h_{z} is constant at U, hence the density of the area measure of order 1 is constant at U, so every restriction of $w+c$ to $u^{\perp}, u \in U$ is isotropic.

The counterexample

- Take G to be a C^{∞} function on the sphere, which is zero at U (but not identically equal to zero).
- There exists continuous $w: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, such that $G(u)=C(w)(u)=\int_{\mathbb{S}^{n-1}}|\langle x, u\rangle| w(x) d x$.
- We can take w to be non-constant on U^{\perp}.
- Then, $C(w+c)$ is the support function of a zonoid Z, for some $c>0$.
- Thus, h_{Z} is constant at U, hence the density of the area measure of order 1 is constant at U, so every restriction of $w+c$ to $u^{\perp}, u \in U$ is isotropic.

Regularity issues

Theorem

Let K be a convex body in $\mathbb{R}^{n}, n \geq 3, U$ be an open connected subset of \mathbb{S}^{n-1} and assume that the measure $\left.S_{1}(K, \cdot)\right|_{\mathcal{B}(U)}$ is absolutely continuous. If for almost every direction $u \in U$ it holds

$$
r_{K}^{1}(u)=\cdots=r_{K}^{n-1}(u)
$$

then $\tau(K, U)$ is contained in a Euclidean sphere.

Thank you!!!!!!

Thank you!!!!!!

