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The problem

Problem

Assume that for a measurable subset U of Sn−1 and for an even
bounded measurable function g : Sn−1 → R, the restriction
g |Sn−1∩u⊥ onto Sn−1 ∩ u⊥ is isotropic, for almost all u ∈ U. What
can be said about g?

Is it true that g is almost everywhere equal to a constant on
the set U⊥?

(Myroschnychenko, RYabogin, S.) True if U = Sn−1.

Not true in general!
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Results

Theorem

Let U be an open subset of Sn−1, that does not contain U⊥.
There exists a continuous function g : Sn−1 → R, such that for
any u ∈ U, g |Sn−1∩u⊥ is isotropic, but g is not constant on U⊥.

Funk and cosine transform of a function ζ : Sn−1 → R:

R(ζ)(u) =

∫
Sn−1∩u⊥

ζ(x)dx , u ∈ Sn−1,

C (ζ)(u) =

∫
Sn−1

|〈x , u〉|ζ(x)dx , u ∈ Sn−1.

Christos Saroglou Functions with isotropic sections



Results

Theorem

Let U be an open subset of Sn−1, that does not contain U⊥.
There exists a continuous function g : Sn−1 → R, such that for
any u ∈ U, g |Sn−1∩u⊥ is isotropic, but g is not constant on U⊥.

Funk and cosine transform of a function ζ : Sn−1 → R:

R(ζ)(u) =

∫
Sn−1∩u⊥

ζ(x)dx , u ∈ Sn−1,

C (ζ)(u) =

∫
Sn−1

|〈x , u〉|ζ(x)dx , u ∈ Sn−1.

Christos Saroglou Functions with isotropic sections



Results

Funk and cosine transform of a function ζ : Sn−1 → R:

R(ζ)(u) =

∫
Sn−1∩u⊥

ζ(x)dx , u ∈ Sn−1,

C (ζ)(u) =

∫
Sn−1

|〈x , u〉|ζ(x)dx , u ∈ Sn−1.

Theorem

Let n ≥ 3, U be an open subset of Sn−1 and g : U → R be an
even, bounded, measurable function. If for almost every u ∈ U,
g |§n−1∩u⊥ is isotropic, then C (g)|U = c + 〈a, ·〉 and R(g)|U = c ′,
almost everywhere in U, for some fixed constants c , c ′ ∈ R and for
some fixed vector a ∈ Rn.
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Proofs

We may assume g > 0.

Then C (g) is the support function of a zonoid Z (g).

It suffices to prove that
τ(Z (g),U) = {x ∈ bdZ (g) : ∃u ∈ U, 〈x , u〉 = hZ(g)(u)} is
contained in a sphere

Recall that R(g) is proportional to the order 1 area measure
of Z (g).

In general, dSi (Z(g),·)
dx =

cn,i
∫
Sn−1∩u⊥ · · ·

∫
Sn−1∩u⊥ det(x1, . . . , xn−1)2g(x1) . . . g(xi )dx1 . . . dxn−1
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g |Sn−1∩u⊥ is isotropic if and only if
dSn−1(Z(g),·)

dx = cn
(
dS1(Z(g),·)

dx

)n−1
.

With cn = 1.

More precisely, it holds dSn−1(Z(g),·)
dx ≤

(
dS1(Z(g),·)

dx

)n−1
, with

equality if and only if g |Sn−1∩u⊥ is isotropic.
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Proofs

Radii of curvature of a smooth convex body K at u ∈ Sn−1:
Eigenvalues of the matrix (hij + hδij)

n−1
i ,j=1 at u

(Very old theorem) If K is smooth and all ri are equal at some
open neighbourhood U ⊆ Sn−1, then τ(K ,U) is contained in
a sphere.

Recall: dS1(Z(g),·)
dx = (r1 + · · ·+ rn−1)/(n − 1) and

dSn−1(Z(g),·)
dx = r1 . . . rn−1

Thus, g |Sn−1∩u⊥ is isotropic for all u ∈ U if and only if
r1 = · · · = rn−1 everywhere in U. �
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The counterexample

Take G to be a C∞ function on the sphere, which is zero at
U (but not identically equal to zero).

There exists continuous w : Sn−1 → R, such that
G (u) = C (w)(u) =

∫
Sn−1 |〈x , u〉|w(x)dx .

We can take w to be non-constant on U⊥.

Then, C (w + c) is the support function of a zonoid Z , for
some c > 0.

Thus, hZ is constant at U, hence the density of the area
measure of order 1 is constant at U, so every restriction of
w + c to u⊥, u ∈ U is isotropic.
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Regularity issues

Theorem

Let K be a convex body in Rn, n ≥ 3, U be an open connected
subset of Sn−1 and assume that the measure S1(K , ·)|B(U) is
absolutely continuous. If for almost every direction u ∈ U it holds

r1K (u) = · · · = rn−1K (u),

then τ(K ,U) is contained in a Euclidean sphere.
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Thank you!!!!!!

Thank you!!!!!!
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