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Convex bodies

The main objects of study are convex bodies. A convex body is a subset
K ⊆ Rn which is convex, compact and has non-empty interior.



Associated functionals

For K ⊂ Rn as before, its support function, its gauge (or Minkowski
functional) and its radial function are defined respectively by

hK(x) := sup{〈x, y〉 : y ∈ K}.

‖x‖K := inf{λ > 0 : x ∈ λK}, x ∈ Rn \ {0},
rK(x) := sup{λ > 0 : λx ∈ K}, x ∈ Rn \ {0}.

Clearly, ‖x‖K = 1
rK(x)
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Associated bodies
Polar body

For K ⊂ Rn we define its polar body, denoted by K◦, by

K◦ := {x ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈ K}

Note that hK = ‖.‖K◦ .

norm body polar body dual norm
H K K◦ ‖.‖K◦ = H∗
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Associated bodies
Centroid body

Lutwak and Zhang introduced for a body K its Lp-Centroid body denoted
by ΓpK. This body is defined by

hpΓpK(x) :=
1

cn,p vol(K)

∫
K
|〈x, y〉|pdy for x ∈ Rn,

where

cn,p =
ωn+p

ω2ωnωp−1
, ωk = vol(Bk

2 ),

connected to this we also have the Lp-Moment body of K denoted by
MpK and defined via

hMpK(x)p =

∫
K
|〈x, y〉|pdy,



Related inequalities

Lp Busemann-Petty centroid inequality

vol(ΓpK) ≥ vol(K) (Lutwak, Yang and Zhang) .

These inequalities are sharp and there is equality if and only if K is a
0-symmetric ellipsoid.
In terms of the Moment body MpK we have

vol(MpK) ≥ cn/pn,p vol(K)
n+p
p
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Euclidean Inequalities

(Aubin and Talenti)

‖f‖ np
n−p
≤ Sn,p

(∫
Rn
|∇f |pdx

)1/p

f(x) =
(
a+ b|x− x0|

p
p−1

)1− p
n

(Del Pino-Dolbeault)

Ent(|f |p) =

∫
|f |p log |f |pdx ≤ n

p
log

(
Lp
∫
|∇f |pdx

)
,

f(x) = Ce−|x−x0|
p
p−1



Inequalities with an abstract norm
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Inequalities with an abstract norm

Cordero-Nazaret-Villani (Mass transportation)
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Affine Inequalities

Cordero-Nazaret-Villani (Mass transportation)
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Affine Inequalities

Lutwak-Yang-Zhang (Lp Minkowski problem + Lp Petty Projection Ineq.)
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n−p
≤ Sn,p

(
cn,p

∫
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)−1/n

f(x) =
(
a+ |A.(x− x0)|

p
p−1

)1− p
n

Ivan Gentil (Ultracontractive bounds for Hamilton-Jacobi equations)

Ent(|f |p) =

∫
|f |p log |f |pdx ≤ n

p
log

(
Lp,H

∫
H∗(∇f)pdx

)

f(x) = Ce−H(x−x0)
p
p−1
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n

Haberl, Schuster and Xiao and independently Zhai

Ent(|f |p) =

∫
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Applications: some inequalities

Sobolev

‖f‖ np
n−p
≤ Sn,p‖∇f‖p

Log - Sobolev

Ent(|f |p) =

∫
|f |p log |f |pdx ≤ n

p
log

(
Lp
∫
|∇f |pdx

)
Gagliardo-Nirenberg

‖f‖r ≤ Gn,p,m,r‖∇f‖θp‖f‖1−θm

Fujita

Ent(eβf ) ≤ n log

(
βkn
e
‖∇f‖∞

)
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Applications: more inequalities

Trace(∫
∂Rn+
|f(0, x)|

p(n−1)
n−p dx

) n−p
p(n−1)

≤ Kn,p

(∫
Rn+
|∇f(t, x)|pdxdt

) 1
p

Weighted Sobolev(∫
Rn+
|f(t, x)|

np
n−p tadxdt

)n−p
np)

≤ Kn,p,a

(∫
Rn+
|∇f(t, x)|ptadxdt

) 1
p

Weighted Gagliardo-Nirenberg

‖f‖Lαp(Rn+,ω) ≤

(∫
Rn+
|∇f(t, x)|tady

) θ
p

‖f‖1−θ
Lα(p−1)+1(Rn+,ω)
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Busemann-Petty centroid

Lp Busemann-Petty centroid inequality

vol(ΓpK) ≥ vol(K) (Lutwak, Yang and Zhang) .

In terms of the Moment body MpK we have

vol(MpK) ≥ cn/pn,p vol(K)
n+p
p



Mixed volume

The Lr-mixed volume Vr(K,L) of convex bodies K and L is defined by

Vr(K,L) =
r

n
lim
ε→0

vol(K +r ε ·r L)− vol(K)

ε
,

where K +r ε ·r L is the convex body defined by:

hK+rε·rL(x)r = hK(x)r + εhL(x)r, ∀x ∈ Rn.
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Geometric Inequalities

It was shown by E. Lutwak that there exists a unique finite positive Borel
measure Sr(K, .) on Sn−1 such that

Vr(K,L) =
1

n

∫
Sn−1

hL(u)rdSr(K,u), (1)

for each convex body L. In the same work he provided the following
special case of Lp Minkwoski inequality for mixed volumes.

If 1 ≤ r <∞ and K,L are convex bodies in Rn containing the origin as
interior point, then

Vr(L,K) ≥ vol(L)
n−r
n vol(K)

r
n . (2)
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Geometric Inequalities

Combining
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r
n .

and
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we can write

Vr(L,MpK) ≥ cr/pn,p vol(L)
n−r
n vol(K)

(n+p)r
np . (3)

which for L = MpK, using the well-known fact that Vr(L,L) = vol(L),
reduces to the Lp-Busemann-Petty centroid inequality mentioned above.
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Functional inequalities

We want to define something reasonable for Vr(f,Mpg).

Let us look back
at this integral representation

Vr(L,MpK) =
1

n
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Sn−1

hMpK(u)rdSr(L, u)
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∫
Sn−1

(∫
K
|〈u, z〉|pdz

)r/p
dSr(L, u)

=
1

n

∫
Sn−1
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Rn

1K(z)|〈u, z〉|pdz
)r/p

dSr(L, u).
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The surface area measure of a function

The Lr surface area measure of a function f : Rn → R with Lr weak
derivative is given by the lemma:

Lemma (LYZ)

Given 1 ≤ r <∞ and a function f : Rn → R with Lr weak derivative,
there exists a unique finite Borel measure Sr(f, .) on Sn−1 such that∫

Rn
φ(−∇f(x))rdx =

∫
Sn−1

φ(u)rdSr(f, u), (4)

for every nonnegative continuous function φ : Rn → R homogeneous of
degree 1. If f is not equal to a constant function almost everywhere, then
the support of Sr(f, .) cannot be contained in any n− 1 dimensional linear
subspace.

1 - Erwin Lutwak, Deane Yang, and Gaoyong Zhang. Optimal Sobolev norms and the lp Minkowski problem. International

Mathematics Research Notices, 2006, 2006.



Functional mixed volume

In view of the previous identity we have that for any f and L such that
Sr(f, .) = Sr(L, .), we have

Vr(L,K) =
1

n

∫
Rn
hK(−∇f(x))rdx.

Using this, we can define

Definition

Given 1 ≤ r <∞ and a function f : Rn → R with Lr weak derivative, we
define

Vr(f,K) =
1

n

∫
Rn
hK(−∇f(x))rdx (5)
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Functional mixed volume

Going back to our original problem, it might seem now more natural to
define the following

Definition: If g is a nonnegative function with compact support, we define
the convex body Mpg by

h(Mpg, ξ)
p =

∫
Rn
g(x)|〈x, ξ〉|pdx. (6)

Definition: If f is a C1 function and g is nonnegative, we define the
r-functional mixed volume of f and Mpg by:

Vr(f,Mpg) =
1

n

∫
Rn

(∫
Rn
g(y)|〈∇f(x), y〉|pdy

)r/p
dx. (7)
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Main Results

Theorem (Haddad, J., Silva)
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Main Results

Our main result will be a consequence of the following two theorems

Theorem

If f is a C1 function with compact support in Rn and K symmetric
convex body, then for 1 < r < n and q = nr

n−r

Vr(f,K) ≥ cr1||f ||rq vol(K)
r
n , (9)
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Ideas in the proof

For f be a C1 function with compact support in Rn and t > 0, consider
the level sets of f in Rn:

Nf,t = {x ∈ Rn : |f(x)| ≥ t}

and
Sf,t = {x ∈ Rn : |f(x)| = t}.

We show ∫ ∞
0

vol(Nf,t)
n+p
n dt ≥ cλ||f ||

(n+p)(λ−1)+p
n(λ−1)

1 ||f ||
− λp
n(λ−1)

λ ,
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Thank you for your attention!


