A Functional version of the Busemann-Petty centroid inequality.

C. Hugo Jiménez
PUC-Rio, Brazil

Asymptotic Geometric Analysis IV
Euler International Mathematical Institute July 2nd, 2019

Convex bodies

The main objects of study are convex bodies. A convex body is a subset $K \subseteq \mathbb{R}^{n}$ which is convex, compact and has non-empty interior.

Associated functionals

For $K \subset \mathbb{R}^{n}$ as before, its support function, its gauge (or Minkowski functional) and its radial function are defined respectively by

$$
h_{K}(x):=\sup \{\langle x, y\rangle: y \in K\} .
$$

Associated functionals

For $K \subset \mathbb{R}^{n}$ as before, its support function, its gauge (or Minkowski functional) and its radial function are defined respectively by

$$
\begin{aligned}
h_{K}(x) & :=\sup \{\langle x, y\rangle: y \in K\} . \\
\|x\|_{K} & :=\inf \{\lambda>0: x \in \lambda K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\},
\end{aligned}
$$

Associated functionals

For $K \subset \mathbb{R}^{n}$ as before, its support function, its gauge (or Minkowski functional) and its radial function are defined respectively by

$$
\begin{aligned}
h_{K}(x) & :=\sup \{\langle x, y\rangle: y \in K\} . \\
\|x\|_{K} & :=\inf \{\lambda>0: x \in \lambda K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\} \\
r_{K}(x) & :=\sup \{\lambda>0: \lambda x \in K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
\end{aligned}
$$

Clearly, $\|x\|_{K}=\frac{1}{r_{K}(x)}$

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Note that $h_{K}=\|\cdot\|_{K^{\circ}}$.

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Note that $h_{K}=\|\cdot\|_{K^{\circ}}$.
norm
H

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Note that $h_{K}=\|\cdot\|_{K^{\circ}}$.

$$
\begin{array}{cc}
\text { norm } & \text { body } \\
H & K
\end{array}
$$

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Note that $h_{K}=\|\cdot\|_{K^{\circ}}$.
norm body polar body
$H \quad K \quad K^{\circ}$

Associated bodies

Polar body

For $K \subset \mathbb{R}^{n}$ we define its polar body, denoted by K°, by

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \quad \forall x \in K\right\}
$$

Note that $h_{K}=\|\cdot\|_{K^{\circ}}$.
norm body polar body dual norm

$$
H \quad K \quad K^{\circ} \quad\|\cdot\|_{K^{\circ}}=H^{*}
$$

Associated bodies

Centroid body

Lutwak and Zhang introduced for a body K its L_{p}-Centroid body denoted by $\Gamma_{p} K$. This body is defined by

$$
h_{\Gamma_{p} K}^{p}(x):=\frac{1}{c_{n, p} \operatorname{vol}(K)} \int_{K}|\langle x, y\rangle|^{p} d y \quad \text { for } x \in \mathbb{R}^{n}
$$

where

$$
c_{n, p}=\frac{\omega_{n+p}}{\omega_{2} \omega_{n} \omega_{p-1}}, \quad \omega_{k}=\operatorname{vol}\left(B_{2}^{k}\right)
$$

connected to this we also have the L_{p}-Moment body of K denoted by $M_{p} K$ and defined via

$$
h_{M_{p} K}(x)^{p}=\int_{K}|\langle x, y\rangle|^{p} d y
$$

Related inequalities

L_{p} Busemann-Petty centroid inequality

$$
\operatorname{vol}\left(\Gamma_{p} K\right) \geq \operatorname{vol}(K) \quad \text { (Lutwak, Yang and Zhang) } .
$$

Related inequalities

L_{p} Busemann-Petty centroid inequality

$$
\operatorname{vol}\left(\Gamma_{p} K\right) \geq \operatorname{vol}(K) \quad \text { (Lutwak, Yang and Zhang) } .
$$

These inequalities are sharp and there is equality if and only if K is a 0 -symmetric ellipsoid.

Related inequalities

L_{p} Busemann-Petty centroid inequality

$$
\operatorname{vol}\left(\Gamma_{p} K\right) \geq \operatorname{vol}(K) \quad \text { (Lutwak, Yang and Zhang) } .
$$

These inequalities are sharp and there is equality if and only if K is a 0 -symmetric ellipsoid.
In terms of the Moment body $M_{p} K$ we have

$$
\operatorname{vol}\left(M_{p} K\right) \geq c_{n, p}^{n / p} \operatorname{vol}(K)^{\frac{n+p}{p}}
$$

Euclidean Inequalities

(Aubin and Talenti)

$$
\begin{gathered}
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p}\left(\int_{\mathbb{R}^{n}}|\nabla f|^{p} d x\right)^{1 / p} \\
f(x)=\left(a+b\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{gathered}
$$

(Del Pino-Dolbeault)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \int|\nabla f|^{p} d x\right) \\
f(x)=C e^{-\left|x-x_{0}\right|^{\frac{p}{p-1}}}
\end{gathered}
$$

Inequalities with an abstract norm

(Aubin and Talenti)

$$
\begin{gathered}
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p}\left(\int_{\mathbb{R}^{n}}|\nabla f|^{p} d x\right)^{1 / p} \\
f(x)=\left(a+b\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{gathered}
$$

(Del Pino-Dolbeault)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \int|\nabla f|^{p} d x\right) \\
f(x)=C e^{-\left|x-x_{0}\right|^{\frac{p}{p-1}}}
\end{gathered}
$$

Inequalities with an abstract norm

Cordero-Nazaret-Villani (Mass transportation)

$$
\begin{aligned}
\|f\|_{\frac{n p}{n-p}} & \leq \mathcal{S}_{n, p, H}\left(\int_{\mathbb{R}^{n}} H^{*}(\nabla f)^{p} d x\right)^{1 / p} \\
f(x) & =\left(a+b H\left(x-x_{0}\right)^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{aligned}
$$

(Del Pino-Dolbeault)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \int|\nabla f|^{p} d x\right) \\
f(x)=C e^{-\left|x-x_{0}\right|^{\frac{p}{p-1}}}
\end{gathered}
$$

Inequalities with an abstract norm

Cordero-Nazaret-Villani (Mass transportation)

$$
\begin{aligned}
\|f\|_{\frac{n p}{n-p}} & \leq \mathcal{S}_{n, p, H}\left(\int_{\mathbb{R}^{n}} H^{*}(\nabla f)^{p} d x\right)^{1 / p} \\
f(x) & =\left(a+b H\left(x-x_{0}\right)^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{aligned}
$$

Ivan Gentil (Ultracontractive bounds for Hamilton-Jacobi equations)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p, H} \int H^{*}(\nabla f)^{p} d x\right) \\
f(x)=C e^{-H\left(x-x_{0}\right)^{\frac{p}{p-1}}}
\end{gathered}
$$

Affine Inequalities

Cordero-Nazaret-Villani (Mass transportation)

$$
\begin{aligned}
\|f\|_{\frac{n p}{n-p}} & \leq \mathcal{S}_{n, p, H}\left(\int_{\mathbb{R}^{n}} H^{*}(\nabla f)^{p} d x\right)^{1 / p} \\
f(x) & =\left(a+b H\left(x-x_{0}\right)^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{aligned}
$$

Ivan Gentil (Ultracontractive bounds for Hamilton-Jacobi equations)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p, H} \int H^{*}(\nabla f)^{p} d x\right) \\
f(x)=C e^{-H\left(x-x_{0}\right)^{\frac{p}{p-1}}}
\end{gathered}
$$

Affine Inequalities

Lutwak-Yang-Zhang (L_{p} Minkowski problem $+L_{p}$ Petty Projection Ineq.)

$$
\begin{gathered}
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p}\left(c_{n, p} \int_{S^{n-1}}\left\|\nabla_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n} \\
\left.f(x)=\left(a+\mid A \cdot\left(x-x_{0}\right)\right)^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{gathered}
$$

Ivan Gentil (Ultracontractive bounds for Hamilton-Jacobi equations)

$$
\begin{gathered}
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p, H} \int H^{*}(\nabla f)^{p} d x\right) \\
f(x)=C e^{-H\left(x-x_{0}\right)^{\frac{p}{p-1}}}
\end{gathered}
$$

Affine Inequalities

Lutwak-Yang-Zhang (L_{p} Minkowski problem $+L_{p}$ Petty Projection Ineq.)

$$
\begin{gathered}
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p}\left(c_{n, p} \int_{S^{n-1}}\left\|\nabla_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n} \\
\left.f(x)=\left(a+\mid A \cdot\left(x-x_{0}\right)\right)^{\frac{p}{p-1}}\right)^{1-\frac{p}{n}}
\end{gathered}
$$

Haberl, Schuster and Xiao and independently Zhai
$\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p}\left(c_{n, p} \int_{S^{n-1}}\left\|\nabla_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}\right)$

$$
f(x)=C e^{-\left|A \cdot\left(x-x_{0}\right)\right|^{\frac{p}{p-1}}}
$$

Applications: some inequalities

Sobolev

$$
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p}\|\nabla f\|_{p}
$$

Log - Sobolev

$$
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \int|\nabla f|^{p} d x\right)
$$

Gagliardo-Nirenberg

$$
\|f\|_{r} \leq \mathcal{G}_{n, p, m, r}\|\nabla f\|_{p}^{\theta}\|f\|_{m}^{1-\theta}
$$

Fujita

$$
\operatorname{Ent}\left(e^{\beta f}\right) \leq n \log \left(\frac{\beta k_{n}}{e}\|\nabla f\|_{\infty}\right)
$$

Applications: some inequalities

Sobolev

$$
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p} \mathcal{E}_{p}(f)
$$

Log - Sobolev

$$
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \int|\nabla f|^{p} d x\right)
$$

Gagliardo-Nirenberg

$$
\|f\|_{r} \leq \mathcal{G}_{n, p, m, r}\|\nabla f\|_{p}^{\theta}\|f\|_{m}^{1-\theta}
$$

Fujita

$$
\operatorname{Ent}\left(e^{\beta f}\right) \leq n \log \left(\frac{\beta k_{n}}{e}\|\nabla f\|_{\infty}\right)
$$

Applications: some inequalities

Sobolev

$$
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p} \mathcal{E}_{p}(f)
$$

Log - Sobolev

$$
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \mathcal{E}_{p}(f)\right)
$$

Gagliardo-Nirenberg

$$
\|f\|_{r} \leq \mathcal{G}_{n, p, m, r}\|\nabla f\|_{p}^{\theta}\|f\|_{m}^{1-\theta}
$$

Fujita

$$
\operatorname{Ent}\left(e^{\beta f}\right) \leq n \log \left(\frac{\beta k_{n}}{e}\|\nabla f\|_{\infty}\right)
$$

Applications: some inequalities

Sobolev

$$
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p} \mathcal{E}_{p}(f)
$$

Log - Sobolev

$$
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \mathcal{E}_{p}(f)\right)
$$

Gagliardo-Nirenberg

$$
\|f\|_{r} \leq \mathcal{G}_{n, p, m, r} \mathcal{E}_{p}(f)^{\theta}\|f\|_{m}^{1-\theta}
$$

Fujita

$$
\operatorname{Ent}\left(e^{\beta f}\right) \leq n \log \left(\frac{\beta k_{n}}{e}\|\nabla f\|_{\infty}\right)
$$

Applications: some inequalities

Sobolev

$$
\|f\|_{\frac{n p}{n-p}} \leq \mathcal{S}_{n, p} \mathcal{E}_{p}(f)
$$

Log - Sobolev

$$
\operatorname{Ent}\left(|f|^{p}\right)=\int|f|^{p} \log |f|^{p} d x \leq \frac{n}{p} \log \left(\mathcal{L}_{p} \mathcal{E}_{p}(f)\right)
$$

Gagliardo-Nirenberg

$$
\|f\|_{r} \leq \mathcal{G}_{n, p, m, r} \mathcal{E}_{p}(f)^{\theta}\|f\|_{m}^{1-\theta}
$$

Fujita

$$
\operatorname{Ent}\left(e^{\beta f}\right) \leq n \log \left(\frac{\beta k_{n}}{e} \mathcal{E}_{\infty}(f)\right)
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p}\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)|^{p} d x d t\right)^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a}\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)|^{p} t^{a} d x d t\right)^{\frac{1}{p}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)| t^{a} d y\right)^{\frac{\theta}{p}}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p} \mathcal{E}_{p}^{+}(f)^{\frac{1}{q}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a}\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)|^{p} t^{a} d x d t\right)^{\frac{1}{p}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)| t^{a} d y\right)^{\frac{\theta}{p}}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p} \mathcal{E}_{p}^{+}(f)^{\frac{1}{q}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a} \mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{\frac{a+1}{n+a}}}^{\frac{a+1}{n+a}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\int_{\mathbb{R}_{+}^{n}}|\nabla f(t, x)| t^{a} d y\right)^{\frac{\theta}{p}}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p} \mathcal{E}_{p}^{+}(f)^{\frac{1}{q}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a} \mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{\frac{a+1}{n+a}}}^{\frac{a+1}{n+a}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\frac{\partial f}{\partial t}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{\frac{1+a}{n+a}}\right)^{\theta}\|f\|_{L^{\alpha(p}(p-1)+1}^{1-\theta}\left(\mathbb{R}_{+}^{n}, \omega\right)
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p}\left(\mathcal{E}_{p}^{+}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a} \mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{\frac{a+1}{n+a}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\frac{\partial f}{\partial t}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{\frac{1+a}{n+a}}\right)^{\theta}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p}\left(\mathcal{E}_{p}^{+}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a}\left(\mathcal{E}_{p, a}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\frac{1}{p}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\mathcal{E}_{p, a}(f)^{\frac{n-1}{n+a}}\left\|\frac{\partial f}{\partial t}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{\frac{1+a}{n+a}}\right)^{\theta}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Applications: more inequalities

Trace

$$
\left(\int_{\partial \mathbb{R}_{+}^{n}}|f(0, x)|^{\frac{p(n-1)}{n-p}} d x\right)^{\frac{n-p}{p(n-1)}} \leq \mathcal{K}_{n, p}\left(\mathcal{E}_{p}^{+}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\frac{1}{p}}
$$

Weighted Sobolev

$$
\left(\int_{\mathbb{R}_{+}^{n}}|f(t, x)|^{\frac{n p}{n-p}} t^{a} d x d t\right)^{\frac{n-p}{n p)}} \leq \mathcal{K}_{n, p, a}\left(\mathcal{E}_{p, a}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\frac{1}{p}}
$$

Weighted Gagliardo-Nirenberg

$$
\|f\|_{L^{\alpha p}\left(\mathbb{R}_{+}^{n}, \omega\right)} \leq\left(\mathcal{E}_{p, a}(f)^{p}+\left\|\partial_{t} f\right\|_{\mathbb{R}_{+}^{n}}^{p}\right)^{\theta}\|f\|_{L^{\alpha(p-1)+1}\left(\mathbb{R}_{+}^{n}, \omega\right)}^{1-\theta}
$$

Busemann-Petty centroid

L_{p} Busemann-Petty centroid inequality

$$
\left.\operatorname{vol}\left(\Gamma_{p} K\right) \geq \operatorname{vol}(K) \quad \text { (Lutwak, Yang and Zhang }\right) .
$$

In terms of the Moment body $M_{p} K$ we have

$$
\operatorname{vol}\left(M_{p} K\right) \geq c_{n, p}^{n / p} \operatorname{vol}(K)^{\frac{n+p}{p}}
$$

Mixed volume

Mixed volume

Mixed volume

The L_{r}-mixed volume $V_{r}(K, L)$ of convex bodies K and L is defined by

$$
V_{r}(K, L)=\frac{r}{n} \lim _{\varepsilon \rightarrow 0} \frac{\operatorname{vol}\left(K+{ }_{r} \varepsilon \cdot{ }_{r} L\right)-\operatorname{vol}(K)}{\varepsilon}
$$

where $K+{ }_{r} \varepsilon \cdot{ }_{r} L$ is the convex body defined by:

$$
h_{K+{ }_{r} \varepsilon \cdot r L}(x)^{r}=h_{K}(x)^{r}+\varepsilon h_{L}(x)^{r}, \quad \forall x \in \mathbb{R}^{n} .
$$

Geometric Inequalities

It was shown by E. Lutwak that there exists a unique finite positive Borel measure $S_{r}(K,$.$) on \mathbb{S}^{n-1}$ such that

$$
\begin{equation*}
V_{r}(K, L)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u)^{r} d S_{r}(K, u) \tag{1}
\end{equation*}
$$

for each convex body L. In the same work he provided the following special case of L_{p} Minkwoski inequality for mixed volumes.

Geometric Inequalities

It was shown by E. Lutwak that there exists a unique finite positive Borel measure $S_{r}(K,$.$) on \mathbb{S}^{n-1}$ such that

$$
\begin{equation*}
V_{r}(K, L)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u)^{r} d S_{r}(K, u) \tag{1}
\end{equation*}
$$

for each convex body L. In the same work he provided the following special case of L_{p} Minkwoski inequality for mixed volumes. If $1 \leq r<\infty$ and K, L are convex bodies in \mathbb{R}^{n} containing the origin as interior point, then

$$
\begin{equation*}
V_{r}(L, K) \geq \operatorname{vol}(L)^{\frac{n-r}{n}} \operatorname{vol}(K)^{\frac{r}{n}} . \tag{2}
\end{equation*}
$$

Geometric Inequalities

Combining

$$
V_{r}(L, K) \geq \operatorname{vol}(L)^{\frac{n-r}{n}} \operatorname{vol}(K)^{\frac{r}{n}}
$$

and

$$
\operatorname{vol}\left(M_{p} K\right) \geq c_{n, p}^{n / p} \operatorname{vol}(K)^{\frac{n+p}{p}}
$$

Geometric Inequalities

Combining

$$
V_{r}(L, K) \geq \operatorname{vol}(L)^{\frac{n-r}{n}} \operatorname{vol}(K)^{\frac{r}{n}} .
$$

and

$$
\operatorname{vol}\left(M_{p} K\right) \geq c_{n, p}^{n / p} \operatorname{vol}(K)^{\frac{n+p}{p}}
$$

we can write

$$
\begin{equation*}
V_{r}\left(L, M_{p} K\right) \geq c_{n, p}^{r / p} \operatorname{vol}(L)^{\frac{n-r}{n}} \operatorname{vol}(K)^{\frac{(n+p) r}{n p}} \tag{3}
\end{equation*}
$$

which for $L=M_{p} K$, using the well-known fact that $V_{r}(L, L)=\operatorname{vol}(L)$, reduces to the L_{p}-Busemann-Petty centroid inequality mentioned above.

Functional inequalities

We want to define something reasonable for $V_{r}\left(f, M_{p} g\right)$.

Functional inequalities

We want to define something reasonable for $V_{r}\left(f, M_{p} g\right)$. Let us look back at this integral representation

$$
\begin{aligned}
V_{r}\left(L, M_{p} K\right) & =\frac{1}{n} \int_{S^{n-1}} h_{M_{p} K}(u)^{r} d S_{r}(L, u) \\
& =\frac{1}{n} \int_{S^{n-1}}\left(\int_{K}|\langle u, z\rangle|^{p} d z\right)^{r / p} d S_{r}(L, u) \\
& =\frac{1}{n} \int_{S^{n-1}}\left(\int_{\mathbb{R}^{n}} 1_{K}(z)|\langle u, z\rangle|^{p} d z\right)^{r / p} d S_{r}(L, u)
\end{aligned}
$$

The surface area measure of a function

The L^{r} surface area measure of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with L^{r} weak derivative is given by the lemma:

Lemma (LYZ)

Given $1 \leq r<\infty$ and a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with L^{r} weak derivative, there exists a unique finite Borel measure $S_{r}(f,$.$) on \mathbb{S}^{n-1}$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \phi(-\nabla f(x))^{r} d x=\int_{\mathbb{S}^{n-1}} \phi(u)^{r} d S_{r}(f, u) \tag{4}
\end{equation*}
$$

for every nonnegative continuous function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ homogeneous of degree 1. If f is not equal to a constant function almost everywhere, then the support of $S_{r}(f,$.$) cannot be contained in any n-1$ dimensional linear subspace.

1 - Erwin Lutwak, Deane Yang, and Gaoyong Zhang. Optimal Sobolev norms and the Ip Minkowski problem. International Mathematics Research Notices, 2006, 2006.

Functional mixed volume

In view of the previous identity we have that for any f and L such that $S_{r}(f,)=.S_{r}(L,$.$) , we have$

$$
V_{r}(L, K)=\frac{1}{n} \int_{\mathbb{R}^{n}} h_{K}(-\nabla f(x))^{r} d x
$$

Functional mixed volume

In view of the previous identity we have that for any f and L such that $S_{r}(f,)=.S_{r}(L,$.$) , we have$

$$
V_{r}(L, K)=\frac{1}{n} \int_{\mathbb{R}^{n}} h_{K}(-\nabla f(x))^{r} d x
$$

Using this, we can define

Definition

Given $1 \leq r<\infty$ and a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with L^{r} weak derivative, we define

$$
\begin{equation*}
V_{r}(f, K)=\frac{1}{n} \int_{\mathbb{R}^{n}} h_{K}(-\nabla f(x))^{r} d x \tag{5}
\end{equation*}
$$

Functional mixed volume

Going back to our original problem, it might seem now more natural to define the following

Functional mixed volume

Going back to our original problem, it might seem now more natural to define the following
Definition: If g is a nonnegative function with compact support, we define the convex body $M_{p} g$ by

$$
\begin{equation*}
h\left(M_{p} g, \xi\right)^{p}=\int_{\mathbb{R}^{n}} g(x)|\langle x, \xi\rangle|^{p} d x \tag{6}
\end{equation*}
$$

Functional mixed volume

Going back to our original problem, it might seem now more natural to define the following
Definition: If g is a nonnegative function with compact support, we define the convex body $M_{p} g$ by

$$
\begin{equation*}
h\left(M_{p} g, \xi\right)^{p}=\int_{\mathbb{R}^{n}} g(x)|\langle x, \xi\rangle|^{p} d x . \tag{6}
\end{equation*}
$$

Definition: If f is a C^{1} function and g is nonnegative, we define the r-functional mixed volume of f and $M_{p} g$ by:

$$
\begin{equation*}
V_{r}\left(f, M_{p} g\right)=\frac{1}{n} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} g(y)|\langle\nabla f(x), y\rangle|^{p} d y\right)^{r / p} d x \tag{7}
\end{equation*}
$$

Main Results

Theorem (Haddad, J., Silva)

Let f be a C^{1} function and g a continuous non-negative function, both with compact support in \mathbb{R}^{n}, then for $1 \leq r<n, q=\frac{n r}{n-r}$ and $\lambda \in\left(\frac{n}{n+p}, 1\right) \cup(1, \infty)$,

$$
\begin{equation*}
V_{r}\left(f, M_{p} g\right) \geq c_{3}^{\frac{r}{p}}\|g\|_{1}^{\frac{[(n+p)(\lambda-1)+p] r}{n_{p}(\lambda-1)}}\|g\|_{\lambda}^{-\frac{\lambda r}{n(\lambda-1)}}\|f\|_{q}^{r} . \tag{8}
\end{equation*}
$$

where $c_{3}=c_{1}^{p} c_{2}^{-\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}$.

Main Results

Theorem (Haddad, J., Silva)

Let f be a C^{1} function and g a continuous non-negative function, both with compact support in \mathbb{R}^{n}, then for $1 \leq r<n, q=\frac{n r}{n-r}$ and $\lambda \in\left(\frac{n}{n+p}, 1\right) \cup(1, \infty)$,

$$
\begin{equation*}
V_{r}\left(f, M_{p} g\right) \geq c_{3}^{\frac{r}{p}}\|g\|_{1}^{\frac{[(n+p)(\lambda-1)+p] r}{n_{p}(\lambda-1)}}\|g\|_{\lambda}^{-\frac{\lambda r}{n(\lambda-1)}}\|f\|_{q}^{r} . \tag{8}
\end{equation*}
$$

where $c_{3}=c_{1}^{p} c_{2}^{-\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}$.

Main Results

Our main result will be a consequence of the following two theorems

Theorem

If f is a C^{1} function with compact support in \mathbb{R}^{n} and K symmetric convex body, then for $1<r<n$ and $q=\frac{n r}{n-r}$

$$
\begin{equation*}
V_{r}(f, K) \geq c_{1}^{r}\|f\|_{q}^{r} \operatorname{vol}(K)^{\frac{r}{n}} \tag{9}
\end{equation*}
$$

Main Results

And

Theorem

If g is a non-negative function with compact support in \mathbb{R}^{n}, then, for each $\lambda \in\left(\frac{n}{n+p}, 1\right) \cup(1, \infty)$, we have that

$$
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} \geq c_{2}^{-\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}\|g\|_{\lambda}^{-\frac{\lambda p}{n(\lambda-1)}}
$$

Main Results

And

Theorem

If g is a non-negative function with compact support in \mathbb{R}^{n}, then, for each $\lambda \in\left(\frac{n}{n+p}, 1\right) \cup(1, \infty)$, we have that

$$
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} \geq c_{2}^{-\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}\|g\|_{\lambda}^{-\frac{\lambda p}{n(\lambda-1)}}
$$

For

$$
G_{p, \lambda}(t)= \begin{cases}\left(1+\|x\|_{K}^{p}\right)^{\frac{1}{\lambda-1}} & \text { if } \lambda<1 \tag{10}\\ \left(1-\|x\|_{K}^{p}\right)_{+}^{\frac{1}{\lambda-1}} & \text { if } \lambda>1\end{cases}
$$

we recover

$$
\operatorname{vol}\left(M_{p} K\right) \geq c_{n, p}^{n / p} \operatorname{vol}(K)^{\frac{n+p}{p}}
$$

Ideas in the proof

For f be a C^{1} function with compact support in \mathbb{R}^{n} and $t>0$, consider the level sets of f in \mathbb{R}^{n} :

$$
N_{f, t}=\left\{x \in \mathbb{R}^{n}:|f(x)| \geq t\right\}
$$

and

$$
S_{f, t}=\left\{x \in \mathbb{R}^{n}:|f(x)|=t\right\}
$$

Ideas in the proof

For f be a C^{1} function with compact support in \mathbb{R}^{n} and $t>0$, consider the level sets of f in \mathbb{R}^{n} :

$$
N_{f, t}=\left\{x \in \mathbb{R}^{n}:|f(x)| \geq t\right\}
$$

and

$$
S_{f, t}=\left\{x \in \mathbb{R}^{n}:|f(x)|=t\right\}
$$

We show

$$
\int_{0}^{\infty} \operatorname{vol}\left(N_{f, t}\right)^{\frac{n+p}{n}} d t \geq c_{\lambda}\|f\|_{1}^{\frac{(n+p)(\lambda-1)+p}{n(\lambda-1)}}\|f\|_{\lambda}^{-\frac{\lambda p}{n(\lambda-1)}}
$$

Ideas in the proof

$$
\begin{equation*}
V_{r}(f, K) \geq c_{1}^{r}\|f\|_{q}^{r} \operatorname{vol}(K)^{\frac{r}{n}}, \tag{11}
\end{equation*}
$$

Ideas in the proof

$$
\begin{gather*}
V_{r}(f, K) \geq c_{1}^{r}\|f\|_{q}^{r} \operatorname{vol}(K)^{\frac{r}{n}}, \tag{11}\\
V_{r}\left(K_{t}, Q\right)=V_{r}(f, t, Q)
\end{gather*}
$$

Ideas in the proof

$$
\begin{gathered}
V_{r}(f, K) \geq c_{1}^{r}\|f\|_{q}^{r} \operatorname{vol}(K)^{\frac{r}{n}} \\
V_{r}\left(K_{t}, Q\right)=V_{r}(f, t, Q) \\
\begin{aligned}
V_{r}(f, K) & =\int_{0}^{\infty} V_{r}(f, t, K) d t \\
& =\int_{0}^{\infty} V_{r}\left(K_{t}, K\right) d t \\
& \geq \int_{0}^{\infty} \operatorname{vol}\left(K_{t}\right)^{\frac{n-r}{n}} \operatorname{vol}(K)^{\frac{r}{n}} d t \\
& =\int_{0}^{\infty} \operatorname{vol}\left(K_{t}\right)^{\frac{n-r}{n}} d t \operatorname{vol}(K)^{\frac{r}{n}} \\
\geq & c_{2}^{r}\|f\|_{q}^{r} \operatorname{vol}(K)^{\frac{r}{n}}
\end{aligned}
\end{gathered}
$$

Ideas in the proof

$$
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} \geq c_{n, p} a_{n, p, \lambda}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{(\lambda-1) n}}\|g\|_{\lambda}^{-\frac{\lambda p}{(\lambda-1) n}}
$$

Ideas in the proof

$$
\begin{aligned}
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} & \geq c_{n, p} a_{n, p, \lambda}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{(\lambda-1) n}}\|g\|_{\lambda}^{-\frac{\lambda p}{(\lambda-1) n}}, \\
\operatorname{vol}\left(M_{p} g\right) & =V_{p}\left(M_{p} g, M_{p} g\right) \\
& =\int_{0}^{\infty} V_{p}\left(M_{p} g, M_{p} N_{g, t}\right) d t \\
& \geq \operatorname{vol}\left(M_{p} g\right)^{\frac{n-p}{n}} \int_{0}^{\infty} \operatorname{vol}\left(M_{p} N_{g, t}\right)^{p / n} d t
\end{aligned}
$$

Ideas in the proof

$$
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} \geq c_{n, p} a_{n, p, \lambda}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{(\lambda-1) n}}\|g\|_{\lambda}^{-\frac{\lambda p}{(\lambda-1) n}}
$$

$$
\operatorname{vol}\left(M_{p} g\right)=V_{p}\left(M_{p} g, M_{p} g\right)
$$

$$
=\int_{0}^{\infty} V_{p}\left(M_{p} g, M_{p} N_{g, t}\right) d t
$$

$$
\geq \operatorname{vol}\left(M_{p} g\right)^{\frac{n-p}{n}} \int_{0}^{\infty} \operatorname{vol}\left(M_{p} N_{g, t}\right)^{p / n} d t
$$

$$
\operatorname{vol}\left(M_{p} g\right)^{\frac{p}{n}} \geq \int_{0}^{\infty} \operatorname{vol}\left(M_{p} N_{g, t}\right)^{\frac{p}{n}} d t
$$

(B-P for domains) $\geq c_{n, p} \int_{0}^{\infty} \operatorname{vol}\left(N_{g, t}\right)^{\frac{n+p}{n}} d t$
(Technical Lemma) $\geq c_{n, p} a_{n, p, \lambda}\|g\|_{1}^{\frac{(n+p)(\lambda-1)+p}{(\lambda-1) n}}\|g\|_{\lambda}^{-\frac{\lambda p}{(\lambda-1) n}}$,

Thank you for your attention!

