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The main objects of study are convex bodies. A convex body is a subset
K C R”™ which is convex, compact and has non-empty interior.
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Associated bodies

Polar body

For K C R™ we define its polar body, denoted by K°, by
K°:={zeR" : (z,y) <1 Ve K}
Note that hx = ||.||xe-

norm body polar body  dual norm
H K K° | ||lge = H*



Associated bodies

Centroid body

Lutwak and Zhang introduced for a body K its L,-Centroid body denoted
by I') K. This body is defined by

1
3 = — Pd f R"
FpK(x) Cnp VOI(K) /K |<IE, y>‘ Y orx & 5
where
Cpp=—"", Wp= vol(Bé“),

connected to this we also have the L,-Moment body of K denoted by
M, K and defined via

gy i ()P = /K (&, v) Pdy,
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Related inequalities

L, Busemann-Petty centroid inequality
vol(I',K) > vol(K') (Lutwak, Yang and Zhang) .

These inequalities are sharp and there is equality if and only if K is a
0-symmetric ellipsoid.
In terms of the Moment body M, K we have

n+p

vol(M,K) > P vol(K) 7



Euclidean Inequalities

(Aubin and Talenti)
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Inequalities with an abstract norm

(Aubin and Talenti)
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Inequalities with an abstract norm

Cordero-Nazaret-Villani (Mass transportation)
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Ivan Gentil (Ultracontractive bounds for Hamilton-Jacobi equations)
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Affine Inequalities

Cordero-Nazaret-Villani (Mass transportation)
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Affine Inequalities

Lutwak-Yang-Zhang (L, Minkowski problem + L,, Petty Projection Ineq.)
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Affine Inequalities

Lutwak-Yang-Zhang (L, Minkowski problem + L,, Petty Projection Ineq.)
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Applications: some inequalities
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Sobolev
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Applications: more inequalities

Trace
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Busemann-Petty centroid

L,, Busemann-Petty centroid inequality
vol(I', ) > vol(K) (Lutwak, Yang and Zhang) .

In terms of the Moment body M, K we have

n+p

vol(M,K) > 027/5 vol(K) »
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Mixed volume

The L,-mixed volume V,.(K, L) of convex bodies K and L is defined by

(K + & L) — vol(K
Vi(K, L) = © timg YL Fr e r L) = vol(K)

n e—0 g

where K 4, € -, L is the convex body defined by:

his,eon(®)” =hg(x)" +ehr(z)", VreR"



Geometric Inequalities

It was shown by E. Lutwak that there exists a unique finite positive Borel
measure S,.(K,.) on S"~! such that
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Vi(K,L) = - ) hr(u)"dS,(K,u), (1)
Sn—
for each convex body L. In the same work he provided the following
special case of L, Minkwoski inequality for mixed volumes.



Geometric Inequalities

It was shown by E. Lutwak that there exists a unique finite positive Borel
measure S,.(K,.) on S"~! such that

Vi(K, L) = 1/Sn1 hi () dS, (K, ), (1)

n

for each convex body L. In the same work he provided the following
special case of L, Minkwoski inequality for mixed volumes.

If 1 <r < ooand K, L are convex bodies in R containing the origin as
interior point, then

Vi(L, K) > vol(L) = vol(K)n. (2)



Geometric Inequalities
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Geometric Inequalities

Combining
Vo (L, K) > vol(L) & vol(K)n.

and
n+p

vol(M,K) > cg(]g’ vol(K) 7
we can write

(n4p)r

Vi(L, M,K) > ci/Pvol(L) "% vol(K) . (3)

which for L = M, K, using the well-known fact that V,.(L, L) = vol(L),
reduces to the L,-Busemann-Petty centroid inequality mentioned above.
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Functional inequalities

We want to define something reasonable for V,.(f, M,g). Let us look back
at this integral representation

1
V(L MyK) = /S B () dS, (L)

_ Tll/s_ </}<\(u,z)]pdz)T/pdSr(L,u)

_ % /S B < / prons z>|pdz> " 45w,



The surface area measure of a function

The L" surface area measure of a function f : R™ — R with L" weak
derivative is given by the lemma:

Lemma (LYZ)

Given 1 < r < oo and a function f : R™ — R with L" weak derivative,
there exists a unique finite Borel measure S,.(f,.) on S*~1 such that

R (b(—v_f(.'l,’))rd.’l,’ = R (U)Tdsr(f, U), (4)
for every nonnegative continuous function ¢ : R — R homogeneous of
degree 1. If f is not equal to a constant function almost everywhere, then
the support of S,.(f,.) cannot be contained in any n — 1 dimensional linear
subspace.

v

1 - Erwin Lutwak, Deane Yang, and Gaoyong Zhang. Optimal Sobolev norms and the Ip Minkowski problem. International

Mathematics Research Notices, 2006, 2006.
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In view of the previous identity we have that for any f and L such that
Sy(f,.) = 5Sr(L,.), we have

V(LK) = © / hic(—V f(z))"da.

n

Using this, we can define

Definition
Given 1 <7 < oo and a function f: R” — R with L™ weak derivative, we
define

V(fK) = [ (V@) do ©)

n
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Functional mixed volume

Going back to our original problem, it might seem now more natural to
define the following

Definition: If g is a nonnegative function with compact support, we define
the convex body Mg by

h(Myg, €7 = / o(a)| (. ) Pd. (6)

RTL

Definition: If f is a C'! function and g is nonnegative, we define the
r-functional mixed volume of f and M,g by:

n

vne =1 [ ([ swiwseora) e



Main Results

Theorem (Haddad, J., Silva)

Let f be a C' function and g a continuous non-negative function, both
with compact support in R", then for1 <r <n, ¢ = 22 and
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Main Results

Our main result will be a consequence of the following two theorems

If f is a C' function with compact support in R™ and K symmetric
convex body, then for 1 <r <mn and ¢ = £

n—r

Vil f, K) = |If1l; vol(K)w, (9)




Main Results

And

If g is a non-negative function with compact support in R™, then, for each

A€ (#p, 1) U (1,00), we have that

@ _(nt+p)(A=D)+p (ntp)A=1)+p __p
vol(Mpg)t 25 0 llglly T Il ™ 7




Main Results

And

If g is a non-negative function with compact support in R™, then, for each
A€ (L 1) U (1,00), we have that

n+p’
» _(n+PE(AA:1§)+p (n+pz(;:1§)+p _ (iil)
vol(Mpg)™ > ¢, gl ||9||>\ )
For )
14+ ||lz]PH>=T ifAr<1
Gorlt) = (LT+ HK)L (10)
(1= [lzlfp) " ifA>1,
we recover

n+p

vol(MpK) > c%g’ vol(K)



|deas in the proof

For f be a C' function with compact support in R” and ¢t > 0, consider
the level sets of f in R™:
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|deas in the proof

For f be a C' function with compact support in R” and ¢t > 0, consider
the level sets of f in R™:

Nir={z e R":|f(z)| > t}
and

Spa={r € R": [f(x)| = 1}.
We show

o] ntp (n+pzf\>\71§)+p _ (f\\p -
PV <4 n _ n —_
/0 vol(Np) 52 dt > x| £, 17115
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|deas in the proof

Vi(f, K) > cqillfllzvol(K)%, (11)
V;‘(KtaQ) = V;‘(fataQ)
W(f,K)z/Ooo%(f,t,K)dt
0
vol(K;) = vol(K)nd
Z/O ol(Ky) ol(K)ndt

[e.9]

= [ vol(K;)“= dtvol(K)=
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|deas in the proof

(ntp)(A—1)+p Ap

P — T —1)n
VOI(Mpg)" > Cn,pan,p,k||g|’1 G HQH,\(A Dn,

VOl(M;D ) = V;l)(Mpg7Mpg)
0

- o]
> vol(Mpg) = / vol(M,N, ;)P/"dt
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|deas in the proof

(tp)(A=1)+p Ap

P - — b
vol(Myg)n > enpanpallglly 77" llglly 77",

vol(M,g) = V,(Mg, M,g)
:/ V;;(Mpg, MpNg,t)dt
0

2 VOl(Mpg)nnp/ VOI(MpNg,t)p/ndt
0
vol(Myg) = > / vol(Mp,N, ;) dt
0

(B-P for domains) > c,,,, / vol(Ny ) " dt
0

(ntp)A—1)+p Ap

(Technical Lemma) > cpanpallgll ™7 llglly ™"



Thank you for your attention!



