

Boris Kashin

Steklov Mathematical Institute Moscow, Russia

kashin@mi-ras.ru

Notations:

Consider $N \times n$ matrix A as the operator from \mathbb{R}^n to \mathbb{R}^N ,

$$||A||_{(p,q)} = \sup_{||x||_{l_p^n} \le 1} ||Ax||_{l_q^N}, \ 1 \le p, q \le \infty$$

$$\langle N \rangle = \{1, 2, \dots, N\}$$

$$v_i, \quad i \in \langle N \rangle \quad - \text{ rows of } A$$

$$w_j, \quad j \in \langle n \rangle \quad - \quad \text{columns of} \quad A$$

If
$$\Omega \subset \langle N \rangle$$
, then $A(\Omega)$ – submatrix generated by v_i , $i \in \Omega$

$$(\cdot, \cdot)$$
 – scalar product in \mathbb{R}^n

$$||x||_p \equiv ||x||_{l_p^n} \quad \text{if} \quad x \in \mathbb{R}^n$$

If $\Phi = {\{\varphi_i(x)\}_{i=1}^n - \text{system}}$ of functions on X, then

$$S_{\Phi}^*(\{a_i\}_{i=1}^n) = f(x) = \sup_{1 \leqslant s = s(x) \leqslant n} \left| \sum_{i=1}^s a_i \varphi_i(x) \right|$$

Kolmogorov's rearrangement problem (1925 ? - 1930 ?):

$$\Phi = \{\varphi_i(x)\}_{i=1}^{\infty} - \text{O.N.S.}$$

Does it exist $\sigma \in S(\infty)$ such that

$$\sum a_i \varphi_{\sigma(i)}(x)$$

converges almost everywhere if

$$\sum a_i^2 < \infty ?$$

Equivalent finite-dimensional version of this problem:

$$\Phi = \{\varphi_i(x)\}_{i=1}^n - \text{O.N.S.}$$

Does it exist $\sigma \in S(n)$ such that for $\Phi_{\sigma} = \{\varphi_{\sigma(i)}\}_{i=1}^{n}$ the operator $S_{\Phi_{\sigma}}^{*}$ has bounded weak $2 \to 2$ norm?

By duality

$$||A||_{(2,1)} = \sup_{\varepsilon_i = \pm 1} \left\| \sum_{i=1}^N \varepsilon_i v_i \right\|_2$$

Marcus, Spielman, Srivastava (2015):

THEOREM 1. If $\{w_j\}_{j=1}^n$ - orthonormal system in \mathbb{R}^N , $||v_i|| \le \varepsilon$, $0 < \varepsilon < 1$, i = 1, 2, ..., N. Then

$$\langle N \rangle = \Omega_1 \cup \Omega_2, \qquad \Omega_1 \cap \Omega_2 = \varnothing$$
 (1)
 $\|A(\Omega_k)\|_{(2,2)} \leqslant \frac{1}{\sqrt{2}} + C\varepsilon, \quad k = 1, 2$
 $(C - \text{absolute constant})$

MAIN COROLLARY ("MSS-points")

Let
$$\{\varphi_i(x)\}_{i=1}^n - \text{ONS} \subset L^2(X, \mu),$$

$$\frac{n}{2} \leqslant \sum \varphi_i^2(x) \leqslant 2n \qquad \forall x \in X,$$

Then
$$\exists \Omega = \{x_1, \ldots, x_s\} \subset X, s \leqslant C_1 n$$
,

such that for any $P = \sum a_i \varphi_i(x)$:

$$C_3 \sqrt{\frac{1}{s} \sum_{\nu=1}^{s} |P(x_{\nu})|^2} \le ||P||_{L^2} \le C_2 \sqrt{\frac{1}{s} \sum_{\nu=1}^{s} |P(x_{\nu})|^2},$$

 C_1, C_2, C_3 – absolute positive constants.

Lunin points (1989) under the same conditions:

$$\exists \ \Omega = \{x_1, \dots, x_s\} \subset X, \ s \leqslant C_1 n,$$

$$C_3 \sqrt{\frac{1}{s} \sum_{\nu=1}^{s} |P(x_{\nu})|^2} \le ||P||_{L^2}.$$

S. Nitzian, A. Olevskii, A. Ulanovskii Proc. of the AMS, vol. ${\bf 144}$, No. 1, 109-118 (2016):

> $\Lambda \subset \mathbb{R}$ – discrete set, μ – Lebeasque measure on \mathbb{R} ,

$$E(\Lambda) = \{e^{i\lambda t}\}_{\lambda \in \Lambda}$$

Definition:

 $E = \{u_j\}_{j=1}^{\infty}$ is a frame in H, if there are positive constants a, A, such that

$$a \|h\|_H^2 \leqslant \sum_{u_j \in \mathcal{E}} |\langle h, u_j \rangle|^2 \leqslant A \|h\|_H^2 \quad \forall h \in H$$

THEOREM. There are positive constants c, C

such that for every set $S \subset \mathbb{R}$, $\mu(S) < \infty$

there is a discrete set $\Lambda \subset \mathbb{R}$

such that $E(\Lambda)$ is a frame in $L^2(S)$

with frame bounds $c\mu(S)$ and $C\mu(S)$.

Peter Oswald, Weiqi Zhou

"Random reordering in SOR methods"

Numer. Math., 135 (2017), 1207--1220

Srivastava reformulated the Theorem 1:

Let $A - N \times n$ matrix such that for any $x \in \mathbb{R}^n$ and $i_0 \in \langle N \rangle$

$$|(v_{i_0}, x)| \le \varepsilon \left(\sum_{i=1}^N |(v_i, x)|^2\right)^{1/2}.$$
 (2)

Then there exists decomposition (1) such that for any $x \in \mathbb{R}^n$

$$\sum_{i \in \Omega_k} |(v_i, x)|^p \leqslant \left(\frac{1}{2} + C\varepsilon\right) \sum_{i=1}^N |(v_i, x)|^p, \quad p = 2, \quad k = 1, 2.$$
 (3)

Srivastava asked if the similar result holds true for p = 1:

"Is a statement like the above true for p = 1?"

Possible applications:

 Goddyn's conjecture on thin spanning trees

• Sharp imbedding of the subspace of L^1 in l_1^n

B. Kashin, I. Limonova

Math. Notes (Zametki), vol. **106**, No. 1 (July 2019):

Decomposing a matrix into two submatrices with extremely small (2,1) norm

If $A - N \times n$ matrix with

$$||A||_{(2,1)} = 1, \qquad ||v_i||_2 \leqslant \varepsilon, \quad i \in \langle N \rangle.$$

Then there exists decomposition (1)

with
$$||\Omega_1| - |\Omega_2|| \leq 1$$
 such that

$$||A(\Omega_k^0)||_{(2,1)} \le \frac{1}{\sqrt{2}} + 2\varepsilon, \qquad k = 1, 2.$$

Let
$$n = 2^s, s = 1, 2, \dots$$
 and $n^{-1/2} \le \varepsilon \le 1$.

There exists $2n \times n$ matrix $A = A(n, \varepsilon)$ such that

for any $x \in \mathbb{R}^n$ and $i_0 \in \langle 2n \rangle$

$$|(v_{i_0}, x)| \le \varepsilon \sum_{i=1}^N |(v_i, x)|, \quad x \in \mathbb{R}^N, \quad i_0 \in \langle N \rangle, \quad (4)$$

but for any decomposition (1) (with N = 2n)

$$M \equiv \max(\|A(\Omega_1)\|_{(2,1)}, \|A(\Omega_2)\|_{(2,1)}) \geqslant$$
$$\geqslant \frac{1}{\sqrt{2}} \left(\frac{1}{1 + (\varepsilon n^{1/2})^{-1}}\right) \|A\|_{(2,1)}.$$

Suppose that for $N \times n$ matrix A and some ε , $0 < \varepsilon \leq \frac{1}{n}$, the estimate (4) is true.

Then there exists decomposition (1) such that

$$||A(\Omega_k)||_{(2,1)} \le \left(\frac{1}{2} + 2\varphi(n,\varepsilon)\right) ||A||_{(2,1)}, \quad k = 1, 2,$$

where

$$\varphi(n,\varepsilon) = \left(n\varepsilon \ln \frac{8}{n\varepsilon}\right)^{1/3}.$$

Suppose that for given $N \times n$ matrix A and $0 < \varepsilon \leqslant \frac{1}{n}$ the estimate (4) is true and for any $x \in \mathbb{R}^n$, $x \neq 0$

$$0 < b \|x\|_2 \leqslant \|Ax\|_1 \leqslant B \|x\|_2.$$

Then there exists decomposition (1) such that for any $x \in \mathbb{R}^n$ and k = 1, 2

$$||A(\Omega_k)x||_1 \le \gamma ||Ax||_1, \gamma = \frac{1}{2} + 4 \left(n\varepsilon \ln \frac{2B}{b\varepsilon^{1/3}n^{1/3}}\right)^{1/3}.$$

THEOREM 2. (J. Bourgain, 1989)

For any O.N.S. $\Phi = \{\varphi_i(x)\}_{i=1}^n$ with

$$\|\varphi_i\|_{L^{\infty}} \leqslant M, \quad i = 1, 2, \dots, n, \tag{*}$$

there exists $\sigma \in S(n)$ such that

 $||S_{\Phi_{\sigma}}^*: l_2^n \to L^2|| \leq C_M \log \log n.$

This is best possible result one may obtain by purely probabilistic method.

Some generalization: A. Lewko, M. Lewko "The square variation of rearranged Fourier series"

Amer. J. of Math.,

vol. **137**, No. 5, 1257 -- 1291 (2015)

THEOREM. (B. K., I. Limonova)

For any O.N.S. $\Phi = \{\varphi_i(x)\}_{i=1}^n$ with the property (*) and any $\gamma > 4$ there exists $\Lambda \subset \langle n \rangle$, $|\Lambda| \geqslant n(\log n)^{-\gamma} \quad such \ that$

$$||S_{\Phi_{\Lambda}}^*: l^{\infty}(\Lambda) \to L^2|| \leq C_{\gamma,M} |\Lambda|^{1/2},$$
where $\Phi_{\Lambda} = \{\varphi_i(x)\}_{i \in \Lambda}.$

Thank you for your attention!