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Hermite-Hadamard inequalities

Jig

C. Hermite J. Hadamard
Theorem 1 (Hermite 1881 & Hadamard 1893)

Let f : R — R concave. Then

f(;a) + @ < 2_13/_: f(x)dx < f <%3 + g) = £(0).
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e K" set of compact convex sets in R”.
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Hermite-Hadamard for f(x)™

Theorem 2 (Milman & Pajor '00)

Let f : R” — Ry be s.t. log f is concave and i : R" — R, a
probability measure. Then

[ <e(f « “TH TR )
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Let f : R” — Ry be s.t. log f is concave and p: R" — R, a
probability measure. Then

f(x)

Jofe09 = (| T

Let K€ K", f: K — R, concave, and m € N. Then

x)Mdx < f(x¢)™,
7 J )

where xr = [, x fidx.
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Hermite-Hadamard for f(x)™

Theorem 3 (G.M.+19, Dragomir '00)

Let f : Bj — Ry concave and m € N. Then

1 2m+n
F(x)"dx < r<2m+”+1>r<”+2) £(0)™.
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Theorem 3 (G.M.+19, Dragomir '00)
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Equality holds iff f is affine and if moreover m > 2, then
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Theorem 4 (G.M.+19)

Let K € K" with K = —K, f : K — R concave, and m € N.
Then
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Theorem 4 (G.M.+19)

Let K € K" with K = —K, f : K — R concave, and m € N.

Then
2m

1
— [ f)mdx <———F(0)™.
IK!/K B <1’

Equality holds iff f is affine and if moreover m > 2 then K is a
generalized cylinder s.t. f =0 in one of its basis.




Proof of Theorem 4

Proof. S1: f concave by r : K — [0, 00) affine s.t.
r(0)=f(0) and r(x)>f(x)Vxe K,

and let g(x) = r(x)/r(0).
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Proof. S1: f concave by r : K — [0, 00) affine s.t.
r(0)=f(0) and r(x)>f(x)Vxe K,

and let g(x) = r(x)/r(0).

S3: After rotating, let h(K, e1) = to and

for every t € [—tp, to].

where ¢ € [0, 1].
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S4: Let K" = 0,,(K) be the Schwarz symm. of K w.r.t. (e1).
S5: Let My = K N (te; + ef) and M. = K’ N (te; + ef-).
S6: Let us define the cylinders

S7: Since Ry, C K’ C Ry and changes continuously on t, let
s.t.

and let R = Ry«.
S8: Let M/ = RN (te1 + ef-) and observe that

M, c M if t €[0,t*] and M; C M if t € [t to].



Proof of Theorem 4
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/ngg;mdxéﬁg(X)’”dXZ/to <1+;5>m\l\/lt|dt

t* ¢ m
IM;‘dt+/ (1+5> | M| dt,
—t* t()
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S9: Then
f(x)m / /to < t >’"
dx < x)"dx = 14+ =9 M,|dt
/K f(o)m &9 (1)
t \".
= 1+—0) [|Mdt
to
L b

_to
m i t m
( 5) M| dt + <1+ 5) | M dt,
—to tO — to

t*
where M = M, M/ and M;* = (M, \ M) U (M!\ MY).
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t* t m
/ <1+5> M| dt
—(E t()
v t m t " *ok
- 14+ —6) +(1——6) )|M*|dt
0 to to
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t* t m
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—(E to
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= m 5\ 2 m to\ "
= 211 — — M |dt
[ () @) e () () e

where e =0 if mis even, and e =1 if m is odd.
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t* t m
/ G+Q M| dt
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[ ) (2 e
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t*6\ 2 o\ "\ [t
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Proof of Theorem 4

Therefore we have proven that

/K ;Eg;:dxg/’?go(x)mdx,

where go(x) is an affine function with go(0) = 1 and
go(—to, x2,...,X,) = 0 for every (xo,...,x,) € R™1,
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Proof of Theorem 4

Therefore we have proven that

/K ;Eg;:dxg/’?go(x)mdx,

where go(x) is an affine function with go(0) = 1 and

go(—to, x2,...,X,) = 0 for every (xo,...,x,) € R""! and thus
/ 0™ 4 < IR| = K. O
kx f(0)™ m+1 m+1



Reverse Hermite-Hadamard

Let 0 e K€ K", f : K — R4 concave and m € N. Then

<m: ”) _1f(0)’" < “1(‘ ROKS




Reverse Hermite-Hadamard

Theorem 5
Let 0 e K€ K", f : K — R4 concave and m € N. Then

<'":”>_1f(0)m L[ fomax.

< —
L

Equality holds iff the graph of f is a cone with basis K x {0} and
apex (0, 7(0)).
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Application

e L7 the set of i-dimensional linear subspaces in R".

e For K € K" and H € L let PyK be the orthogonal projection of
K onto H.

Theorem 6 (Brunn 1887 & Minkowski 1896)

Let K,C € K". Then
(1= MK +AC|7 > (1= A)|K|7 + A|C|

for any X € [0, 1].




Application

Theorem 7 (Rogers & Shephard '58)

Let K€ K" and H € L7. Then
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Theorem 7 (Rogers & Shephard '58)

Let K€ K" and H € L7. Then

-1
<’,’) IPuK| - |K N HY| < |K|.
I

Theorem 8 (Fubini's formula)

Let K€ K" and H € L. Then

|K| < |PyK|max|K N (x + HY)|.
xeH
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Corollary (Spingarn '93, Milman & Pajor '00)

Let K€ K" and H € L?. Then

|K| < |PuK|-|K N (xx + HY)].

Corollary (Jensen 1906)
Let K€ K" and H e L)_;. Then

K| < [PuK] - |K 0 (xpyk + HY)L.




Application

Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = Bj. Then

2" 2n—i +1 |+ 2
K< o (50 1 (52 tpuk - Ik )

2 2




Application

Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = Bj. Then

2" 2n—i +1 |+ 2
K< o (50 1 (52 tpuk - Ik )

m2nl

Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = —PyK. Then

2 2

2n—i
K| < ———7IPuK|- KN H|
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Proof of Corollary. By Fubini's formula

K| = / |K N (x 4+ HY)|dx.
PuK



Application

Proof of Corollary. By Fubini's formula
K| = / |K N (x 4+ HY)|dx.
PuK

Let

f:PyK — R, bes.t. f(x):]Km(X+HL)‘ﬁ_



Application

Proof of Corollary. By Fubini's formula
K| =/ |K N (x + HY)|dx.
PyK
Let
f:PyK - Ry best f(x)=|KnN(x+ HL)‘ﬁ_

By Brunn-Minkowski inequality f is concave.



Application

Proof of Corollary. By Fubini's formula
K| = / |K N (x 4+ HY)|dx.
PuK

Let
f:PyK - Ry best f(x)=|KnN(x+ HL)‘ﬁ_
By Brunn-Minkowski inequality f is concave. By Theorem 4

K] 1

— f(X)n—idX
|PhK|  [PHK| Jpyk




Application

Proof of Corollary. By Fubini's formula
K| =/ |K N (x + HY)|dx.
PyK
Let
f:PyK - Ry best f(x)=|KnN(x+ HL)‘ﬁ_

By Brunn-Minkowski inequality f is concave. By Theorem 4

K] 1 »
= f(x)""dx
|PhK|  [PHK| Jpyk )
2n=i ;
< f(0)"
“n—i+l1 0



Application

Proof of Corollary. By Fubini's formula
K| =/ |K N (x + HY)|dx.
PyK
Let
f:PyK - Ry best f(x)=|KnN(x+ HL)‘ﬁ_

By Brunn-Minkowski inequality f is concave. By Theorem 4

K| 1 y
= f(x)""dx
|PhK|  [PHK| Jpyk )
2n—i ) 2n—i
<7f n—i —_ - K HJ_ . |:|
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Thank you for your attention!!



