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Minkowski problem

Given a probability measure µ on the unit sphere Sn−1 �nd a convex body

K ⊂ Rn such that µ is the push-forward image of the surface measure Hn−1|∂K
under the Gauss map

x→ n∂K(x)

Analytically the problem is reduced to an equation of the Monge-Amp�ere

type.

Variational solution:

The solution K minimizes the functional

L→
∫
hLdµ, L ⊂ Rn

under the constraint V ol(L) = 1. Here hL is the support functional of L.



Uniqueness for the Minkowski problem: Brunn�Minkowski inequality

A,B ⊂ Rn

V ol
1
n(A+B) ≥ V ol

1
n(A) + V ol

1
n(B).

Equivalent form:

V ol(λA+ (1− λ)B) ≥ V olλ(A)V ol1−λ(B), ∀λ ∈ [0,1].

BM inequality implies uniqueness for the Minkowski problem



Logarithmic Minkowski problem

Given an (even) probability measure µ on the unit sphere Sn−1 �nd a convex

body K ⊂ Rn containing 0 such that µ is the push-forward measure of measure

m =
1

n
〈x, n∂K(x)〉H

n−1|∂K

under the Gauss map

x→ n∂K(x)

Geometrical meaning of m: m is the image of V ol|K under the mapping x→
x
‖x‖K

.

The push-forward of m under Gauss map is called the cone measure of K.

The corresponding Monge-Amp�ere equation (for probability measure µ =
ρµ · Hn−1|Sn−1)

ρµ =
1

n
hdetD2h,

D2h = h · Id +∇2
Sn−1h.



Why logarithmic?

Variational solution: Any minimizer of the functional

L→
∫

loghLdµ, L ⊂ Rn

under the constraint V ol(L) = 1 solves the log-Minkowski problem.

Existence of solution (for even measures) : B�or�oczky K.J., Lutwak E., Yang D.,

Zhang G. The logarithmic Minkowski problem. J. Amer. Math. Soc., 26(3):831�

852, 2013.

Uniqueness: open problem.

It is known that uniqueness follows from the conjectured log-Brunn-Minkowski

inequality.



Log Brunn�Minkowski conjecture

A,B ⊂ Rn are symmetric convex bodies.

V ol(λA+0 (1− λ)B) ≥ V olλ(A)V ol1−λ(B), ∀λ ∈ [0,1].

Here λA+0 (1− λ)B is the �logarithmic� Minkowski addition:

λA+0 (1− λ)B =
⋂

u∈Rn

{
x : 〈x, u〉 ≤ hλA(u)h1−λ

B (u)
}

It is the limiting case of �p-addition�, p→ 0+

λA+p (1− λ)B =
⋂

u∈Rn

{
x : 〈x, u〉 ≤

[
λh

p
A(u) + (1− λ)hpB(u)

]1
p
}



Known results

• B�or�oczky�Lutwak�Yang�Zhang [2012] con�rmed the conjecture in the

plane R2.

• C. Saroglou [2015] veri�ed the conjecture when K0,K1 ⊂ Rn are both

simultaneously unconditional with respect to the same orthogonal basis,

meaning that they are invariant under re�ections with respect to the

principle coordinate hyperplanes xi = 0.

• L. Rotem [2014] : complex convex bodies

• A. Colesanti, G. Livshyts and A. Marsiglietti [2017] veri�ed the conjecture

locally for small enough C2-perturbations of the Euclidean ball Bn2.

• E. Milman and K. [2017] generalized this result to lp-balls, p > 2 (dimension

is large). Proved p�Minkowsky inequality locally for p ≥ 1− C
n3/2.



• S. Chen, Y. Huang, Q.-R. Li, J. Liu (arXiv:1811.10181) Using PDE

methods proved the corresponding global generalization of the result of

K. and Milman.



Kantorovich problem

µ, ν are probability measures on Rn, Π(µ, ν) are probability measure on Rn×Rn

with marginals µ, ν

Quadratic transportation cost function / Kantorovich distance

W2(µ, ν) =
[

inf
π∈Π(µ,ν)

∫
Rn×Rn

|x− y|2dπ
]1

2
.

Kantorovich duality:

1

2
W2

2 (µ, ν) = sup
ϕ(x)+ψ(y)≤1

2|x−y|2

(∫
ϕdµ+

∫
ψdν

)

Brenier theorem: Let π ∈ Π(µ, ν) be the minimum point of

π →
∫
Rn×Rn

|x− y|2dπ.

Then π(Γ) = 1, where

Γ = {(x, x−∇ϕ(x))} = {(x,∇Φ(x))}.

In addition, Φ = 1
2|x|

2 − ϕ is a convex function.



Optimal transportation

ν is the push-forward image of µ under the optimal transportation mapping

x→ ∇Φ(x)

The corresponding Monge-Amp�ere equation for µ = ρµdx, ν = ρνdx

ρµ = ρν(∇Φ) detD2Φ



K�ahler�Einstein equation

%(∇Φ) detD2Φ = e−Φ,

where

ν = %dx

is a probaility measure and Φ is a convex function. Assumption:
∫
xd% = 0.

Well-posedness : D. Cordero-Erausquin, B. Klartag, 2015.

Approach: Φ is a maximum point of

J(f) = log
∫
e−f

∗
dx−

∫
fdν.

J is concave (Brunn-Minkowski inequality)



Another transportational functional for KE equation

F. Santambrogio, 2015 ρ = e−Φ gives minimum to the functional

F(ρ) = −
1

2
W2

2 (ν, ρdx) +
1

2

∫
x2ρ dx+

∫
ρ log ρdx. (1)

F is not convex, but displacement convex.

Gaussian version of this functional (K., E. Kosov; [2017])

Fγ(ρ) = −
1

2
W2

2 (g · γ, ρ · γ) +
∫
ρ log ρ dγ,

where

γ =
1

(2π)
n
2
e−

1
2|x|

2
dx,

g · γ, ρ · γ are probability measures.



Spherical variational functional

Introduce the following Kantorovich functional on Sn−1:

K(µ, ν) = min
π∈Π(µ,ν)

∫
(Sn−1)2

c(x, y)dπ,

where

c(x, y) =

{
log 1
〈x,y〉, 〈x, y〉 > 0

+∞, 〈x, y〉 ≤ 0.

Entropy functional (σ is the probablity uniform measure on Sn−1: )

Ent(m) =

{ ∫
ρ log ρdσ, if m = ρ · σ

+∞, otherwise.

Theorem ( K. [2018]) The minimizers of the functional

F (ν) =
1

n
Ent(ν)−K(µ, ν), (2)

are solutions to the log-Minkowski problem for µ.



Displacement convexity

The strict displacement convexity of F on the space of measures would imply

uniqueness of solution to the log-Minkowski problem.

Transportation inequalities

M. Talagrand (1999)

1

2
W2

2 (γ, g · γ) ≤ Entγ(g),

whre γ = 1

(2π)
n
2
e−
|x|2

2 dx, Entγ(g) =
∫
g log gdγ.

M. Fathi (2018), strong transportation inequality

Assume that f · γ has zero mean. Then

1

2
W2

2 (f · γ, g · γ) ≤ Entγ(f) + Entγ(g).



The proof of Fathi relies on the Kantorovich duality and the following result

(functional Blaschke-Santal�o inequality).

Theorem ( S. Artstein, B. Klartag, V. Milman, 2006). Let f(x) ≥
0, g(y) ≥ 0 satisfy

f(x)g(y) ≤ e〈x,y〉.

Assume that
∫
xf(x) = 0. Then∫

Rn
f(x)dx

∫
Rn
g(y)dy ≤ (2π)n.



Strong transportation inequality for Sn−1

Let µ, ν � be even probability measures on Sn−1. Then

K(µ, ν) ≤
1

n
Ent(µ) +

1

n
Ent(ν). (3)

Proof:

Kantorovich-type duality for the functional K (V. Oliker, 2007)

K(µ, ν) = sup
h,r

(∫
log rdµ−

∫
loghdν

)
,

where h, r are support and radial functional of a convex body Ω.

n
∫

log rdµ ≤
∫ (
n log r −

∫
rndσ

)
dµ+ log

∫
rndσ

By the Young inequality xy ≤ ex + y log y − y∫ (
n log r −

∫
rndσ

)
dµ ≤ Ent(µ)

Apply the same arguments to −
∫

loghdν.



Finally,

K(µ, ν) ≤
1

n
Ent(µ) +

1

n
Ent(ν) +

1

n
log

(∫
rndσ

∫ 1

hn
dσ

)
Applying ∫

Sn−1
rndµ =

V ol(Ω)

V ol(B)
,

we get ∫
rndσ

∫ 1

hn
dσ =

V ol(Ω)V ol(Ω◦)

V ol2(B)
,

where Ω◦ is the polar body to Ω. The result follows from the Blaschke-Santal�o

inequality

V ol(Ω)V ol(Ω◦)

V ol2(B)
≤ 1.


