Alexander Kolesnikov

Higher School of Economics, Moscow

Logarithmic Minkowski problem and optimal transportation

St. Petersburg, 2019

Minkowski problem

Given a probability measure μ on the unit sphere S^{n-1} find a convex body $K \subset \mathbb{R}^{n}$ such that μ is the push-forward image of the surface measure $\left.\mathcal{H}^{n-1}\right|_{\partial K}$ under the Gauss map

$$
x \rightarrow n_{\partial K}(x)
$$

Analytically the problem is reduced to an equation of the Monge-Ampère type.

Variational solution:

The solution K minimizes the functional

$$
L \rightarrow \int h_{L} d \mu, L \subset \mathbb{R}^{n}
$$

under the constraint $\operatorname{Vol}(L)=1$. Here h_{L} is the support functional of L.

Uniqueness for the Minkowski problem: Brunn-Minkowski inequality
$A, B \subset \mathbb{R}^{n}$

$$
\operatorname{Vol}^{\frac{1}{n}}(A+B) \geq \operatorname{Vol}^{\frac{1}{n}}(A)+\operatorname{Vol}^{\frac{1}{n}}(B)
$$

Equivalent form:

$$
\operatorname{Vol}(\lambda A+(1-\lambda) B) \geq \operatorname{Vol}^{\lambda}(A) \operatorname{Vol}^{1-\lambda}(B), \forall \lambda \in[0,1]
$$

BM inequality implies uniqueness for the Minkowski problem

Logarithmic Minkowski problem

Given an (even) probability measure μ on the unit sphere S^{n-1} find a convex body $K \subset \mathbb{R}^{n}$ containing 0 such that μ is the push-forward measure of measure

$$
m=\left.\frac{1}{n}\left\langle x, n_{\partial K(x)}\right\rangle \mathcal{H}^{n-1}\right|_{\partial K}
$$

under the Gauss map

$$
x \rightarrow n_{\partial K}(x)
$$

Geometrical meaning of $m: m$ is the image of $\left.V o l\right|_{K}$ under the mapping $x \rightarrow$ $\frac{x}{\|x\|_{K}}$.

The push-forward of m under Gauss map is called the cone measure of K.
The corresponding Monge-Ampère equation (for probability measure $\mu=$ $\left.\left.\rho_{\mu} \cdot \mathcal{H}^{n-1}\right|_{S^{n-1}}\right)$

$$
\rho_{\mu}=\frac{1}{n} h \operatorname{det} D^{2} h,
$$

$D^{2} h=h \cdot \mathrm{Id}+\nabla_{S^{n-1}}^{2} h$.

Why logarithmic?

Variational solution: Any minimizer of the functional

$$
L \rightarrow \int \log h_{L} d \mu, L \subset \mathbb{R}^{n}
$$

under the constraint $\operatorname{Vol}(L)=1$ solves the log-Minkowski problem.

Existence of solution (for even measures) : Böröczky K.J., Lutwak E., Yang D., Zhang G. The logarithmic Minkowski problem. J. Amer. Math. Soc., 26(3):831852, 2013.

Uniqueness: open problem.

It is known that uniqueness follows from the conjectured log-Brunn-Minkowski inequality.

Log Brunn-Minkowski conjecture

$A, B \subset \mathbb{R}^{n}$ are symmetric convex bodies.

$$
\operatorname{Vol}(\lambda A+0(1-\lambda) B) \geq \operatorname{Vol}^{\lambda}(A) \operatorname{Vol}^{1-\lambda}(B), \forall \lambda \in[0,1]
$$

Here $\lambda A+_{0}(1-\lambda) B$ is the "logarithmic" Minkowski addition:

$$
\lambda A+o(1-\lambda) B=\bigcap_{u \in \mathbb{R}^{n}}\left\{x:\langle x, u\rangle \leq h_{A}^{\lambda}(u) h_{B}^{1-\lambda}(u)\right\}
$$

It is the limiting case of " p -addition", $p \rightarrow 0+$

$$
\lambda A+{ }_{p}(1-\lambda) B=\bigcap_{u \in \mathbb{R}^{n}}\left\{x:\langle x, u\rangle \leq\left[\lambda h_{A}^{p}(u)+(1-\lambda) h_{B}^{p}(u)\right]^{\frac{1}{p}}\right\}
$$

Known results

- Böröczky-Lutwak-Yang-Zhang [2012] confirmed the conjecture in the plane \mathbb{R}^{2}.
- C. Saroglou [2015] verified the conjecture when $K_{0}, K_{1} \subset \mathbb{R}^{n}$ are both simultaneously unconditional with respect to the same orthogonal basis, meaning that they are invariant under reflections with respect to the principle coordinate hyperplanes $x_{i}=0$.
- L. Rotem [2014] : complex convex bodies
- A. Colesanti, G. Livshyts and A. Marsiglietti [2017] verified the conjecture locally for small enough C^{2}-perturbations of the Euclidean ball B_{2}^{n}.
- E. Milman and K. [2017] generalized this result to l^{p}-balls, $p>2$ (dimension is large). Proved p-Minkowsky inequality locally for $p \geq 1-\frac{C}{n^{3 / 2}}$.
- S. Chen, Y. Huang, Q.-R. Li, J. Liu (arXiv:1811.10181) Using PDE methods proved the corresponding global generalization of the result of K. and Milman.

Kantorovich problem

μ, ν are probability measures on $\mathbb{R}^{n}, \Pi(\mu, \nu)$ are probability measure on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with marginals μ, ν

Quadratic transportation cost function / Kantorovich distance

$$
W_{2}(\mu, \nu)=\left[\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|x-y|^{2} d \pi\right]^{\frac{1}{2}}
$$

Kantorovich duality:

$$
\frac{1}{2} W_{2}^{2}(\mu, \nu)=\sup _{\varphi(x)+\psi(y) \leq \frac{1}{2}|x-y|^{2}}\left(\int \varphi d \mu+\int \psi d \nu\right)
$$

Brenier theorem: Let $\pi \in \Pi(\mu, \nu)$ be the minimum point of

$$
\pi \rightarrow \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|x-y|^{2} d \pi
$$

Then $\pi(\Gamma)=1$, where

$$
\ulcorner=\{(x, x-\nabla \varphi(x))\}=\{(x, \nabla \Phi(x))\} .
$$

In addition, $\Phi=\frac{1}{2}|x|^{2}-\varphi$ is a convex function.

Optimal transportation

ν is the push-forward image of μ under the optimal transportation mapping

$$
x \rightarrow \nabla \Phi(x)
$$

The corresponding Monge-Ampère equation for $\mu=\rho_{\mu} d x, \nu=\rho_{\nu} d x$

$$
\rho_{\mu}=\rho_{\nu}(\nabla \Phi) \operatorname{det} D^{2} \Phi
$$

Kăhler-Einstein equation

$$
\varrho(\nabla \Phi) \operatorname{det} D^{2} \Phi=e^{-\Phi},
$$

where

$$
\nu=\varrho d x
$$

is a probaility measure and Φ is a convex function. Assumption: $\int x d \varrho=0$.

Well-posedness : D. Cordero-Erausquin, B. Klartag, 2015.

Approach: Φ is a maximum point of

$$
J(f)=\log \int e^{-f^{*}} d x-\int f d \nu
$$

J is concave (Brunn-Minkowski inequality)

Another transportational functional for KE equation

F. Santambrogio, $2015 \rho=e^{-\Phi}$ gives minimum to the functional

$$
\begin{equation*}
\mathcal{F}(\rho)=-\frac{1}{2} W_{2}^{2}(\nu, \rho d x)+\frac{1}{2} \int x^{2} \rho d x+\int \rho \log \rho d x \tag{1}
\end{equation*}
$$

\mathcal{F} is not convex, but displacement convex.

Gaussian version of this functional (K., E. Kosov; [2017])

$$
\mathcal{F}_{\gamma}(\rho)=-\frac{1}{2} W_{2}^{2}(g \cdot \gamma, \rho \cdot \gamma)+\int \rho \log \rho d \gamma
$$

where

$$
\gamma=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2}|x|^{2}} d x
$$

$g \cdot \gamma, \rho \cdot \gamma$ are probability measures.

Spherical variational functional

Introduce the following Kantorovich functional on S^{n-1} :

$$
K(\mu, \nu)=\min _{\pi \in \Pi(\mu, \nu)} \int_{\left(S^{n-1}\right)^{2}} c(x, y) d \pi
$$

where

$$
c(x, y)=\left\{\begin{array}{cc}
\log \frac{1}{\langle x, y\rangle}, & \langle x, y\rangle>0 \\
+\infty, & \langle x, y\rangle \leq 0 .
\end{array}\right.
$$

Entropy functional (σ is the probablity uniform measure on S^{n-1} :)

$$
\operatorname{Ent}(m)=\left\{\begin{array}{cc}
\int \rho \log \rho d \sigma, & \text { if } m=\rho \cdot \sigma \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

Theorem (K. [2018]) The minimizers of the functional

$$
\begin{equation*}
F(\nu)=\frac{1}{n} \operatorname{Ent}(\nu)-K(\mu, \nu), \tag{2}
\end{equation*}
$$

are solutions to the log-Minkowski problem for μ.

Displacement convexity

The strict displacement convexity of F on the space of measures would imply uniqueness of solution to the log-Minkowski problem.

Transportation inequalities

M. Talagrand (1999)

$$
\frac{1}{2} W_{2}^{2}(\gamma, g \cdot \gamma) \leq \operatorname{Ent}_{\gamma}(g)
$$

whre $\gamma=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{2}} d x, \operatorname{Ent}_{\gamma}(g)=\int g \log g d \gamma$.
M. Fathi (2018), strong transportation inequality

Assume that $f \cdot \gamma$ has zero mean. Then

$$
\frac{1}{2} W_{2}^{2}(f \cdot \gamma, g \cdot \gamma) \leq \operatorname{Ent}_{\gamma}(f)+\operatorname{Ent}_{\gamma}(g)
$$

The proof of Fathi relies on the Kantorovich duality and the following result (functional Blaschke-Santaló inequality).

Theorem (S. Artstein, B. Klartag, V. Milman, 2006). Let $f(x) \geq$ $0, g(y) \geq 0$ satisfy

$$
f(x) g(y) \leq e^{\langle x, y\rangle}
$$

Assume that $\int x f(x)=0$. Then

$$
\int_{\mathbb{R}^{n}} f(x) d x \int_{\mathbb{R}^{n}} g(y) d y \leq(2 \pi)^{n}
$$

Strong transportation inequality for S^{n-1}

Let μ, ν - be even probability measures on S^{n-1}. Then

$$
\begin{equation*}
K(\mu, \nu) \leq \frac{1}{n} \operatorname{Ent}(\mu)+\frac{1}{n} \operatorname{Ent}(\nu) . \tag{3}
\end{equation*}
$$

Proof:

Kantorovich-type duality for the functional K (V. Oliker, 2007)

$$
K(\mu, \nu)=\sup _{h, r}\left(\int \log r d \mu-\int \log h d \nu\right)
$$

where h, r are support and radial functional of a convex body Ω.

$$
n \int \log r d \mu \leq \int\left(n \log r-\int r^{n} d \sigma\right) d \mu+\log \int r^{n} d \sigma
$$

By the Young inequality $x y \leq e^{x}+y \log y-y$

$$
\int\left(n \log r-\int r^{n} d \sigma\right) d \mu \leq \operatorname{Ent}(\mu)
$$

Apply the same arguments to $-\int \log h d \nu$.

Finally,

$$
K(\mu, \nu) \leq \frac{1}{n} \operatorname{Ent}(\mu)+\frac{1}{n} \operatorname{Ent}(\nu)+\frac{1}{n} \log \left(\int r^{n} d \sigma \int \frac{1}{h^{n}} d \sigma\right)
$$

Applying

$$
\int_{\mathbb{S}^{n-1}} r^{n} d \mu=\frac{\operatorname{Vol}(\Omega)}{\operatorname{Vol}(B)}
$$

we get

$$
\int r^{n} d \sigma \int \frac{1}{h^{n}} d \sigma=\frac{\operatorname{Vol}(\Omega) \operatorname{Vol}\left(\Omega^{\circ}\right)}{\operatorname{Vol}^{2}(B)}
$$

where Ω° is the polar body to Ω. The result follows from the Blaschke-Santaló inequality

$$
\frac{\operatorname{Vol}(\Omega) \operatorname{Vol}\left(\Omega^{\circ}\right)}{\operatorname{Vol}^{2}(B)} \leq 1
$$

