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Minkowski problem

Given a probability measure 1 on the unit sphere S"~1 find a convex body
K C R" such that p is the push-forward image of the surface measure H" 1|55
under the Gauss map

xr — ng(x)

Analytically the problem is reduced to an equation of the Monge-Ampere

type.
Variational solution:

The solution K minimizes the functional
L—>/hLdu, L C R"

under the constraint Vol(L) = 1. Here hy is the support functional of L.



Uniqueness for the Minkowski problem: Brunn—Minkowski inequality

A, B CR"

Voln(A+4 B) > Voln(A) + Voln (B).

Equivalent form:

Vol(A 4+ (1 — M) B) > VolMA)Voll=MB), VA e [0,1].

BM inequality implies uniqgueness for the Minkowski problem



Logarithmic Minkowski problem

Given an (even) probability measure u on the unit sphere S*~ 1 find a convex
body K C R™ containing O such that u is the push-forward measure of measure

1 _
m = ﬁ(ﬂ%”aK(xﬁHn 1|(3>K

under the Gauss map

x — ng(x)

Geometrical meaning of m: m is the image of Vol|x under the mapping = —

ol K

The push-forward of m under Gauss map is called the cone measure of K.

The corresponding Monge-Ampeére equation (for probability measure u =
pp - H" Hgn1)

1
pu = —hdet D?h,
n

D?h =h-1d + Vg, _;h.



Why logarithmic?

Variational solution: Any minimizer of the functional

L= /Iog hidu, L CR"
under the constraint Vol(L) = 1 solves the log-Minkowski problem.
Existence of solution (for even measures) : Boroczky K.J., Lutwak E., Yang D.,

Zhang G. The logarithmic Minkowski problem. J. Amer. Math. Soc., 26(3):831—
852, 2013.

Uniqueness: open problem.

It is known that uniqueness follows from the conjectured log-Brunn-Minkowski
inequality.



Log Brunn—Minkowski conjecture

A, B C R"™ are symmetric convex bodies.

Vol(AA 4 (1 — A\)B) > Vol (A)Vol!~B), VA € [0, 1].

Here AA 4+ (1 — M) B is the “logarithmic” Minkowski addition:

M40 (1 -NB= () {zc {x,u) < hi‘l(u)hjlg_k(u)}
ueR"

It is the limiting case of “p-addition”, p — 0+

sl

M+, (1-XN)B= () {a: {x,u) < [/\hg(u) + (1 — )\)h%(u)]

ucR”

}



Known results

e Boroczky—Lutwak—Yang—Zhang [2012] confirmed the conjecture in the
plane RZ.

e C. Saroglou [2015] verified the conjecture when K, K1 C R™ are both
simultaneously unconditional with respect to the same orthogonal basis,
meaning that they are invariant under reflections with respect to the
principle coordinate hyperplanes x; = 0.

e L. Rotem [2014] : complex convex bodies

e A. Colesanti, G. Livshyts and A. Marsiglietti [2017] verified the conjecture
locally for small enough C?-perturbations of the Euclidean ball BY.

e E. Milman and K. [2017] generalized this result to [P-balls, p > 2 (dimension

is large). Proved p—Minkowsky inequality locally for p > 1 — #



e S. Chen, Y. Huang, Q.-R. Li, J. Liu (arXiv:1811.10181) Using PDE
methods proved the corresponding global generalization of the result of
K. and Milman.



Kantorovich problem

1, v are probability measures on R™, M(u,v) are probability measure on R"™ x R"
with marginals u, v

Quadratic transportation cost function / Kantorovich distance

1
W (s, v =[ inf / z — y)2d ]2.
Q(M ) mel(u,v) R”XR”| y‘ n

Kantorovich duality:

1
W3 () = sup ([ wdn+ [ vav)
p(2)+¢(y)<3|z—y|2

Brenier theorem: Let 7w € M(u,v) be the minimum point of

™ — |z — y|%dnr.
R?xR™

Then « (") = 1, where

M={(z,z = Vp(2))} = {(z, VP(x))}.
In addition, ® = 3|z|° — ¢ is a convex function.



Optimal transportation

v is the push-forward image of u under the optimal transportation mapping

x — VP (x)

The corresponding Monge-Ampere equation for u = pudx, v = pydx



Kdhler—Einstein equation

o(Vd)det D°d = e~
where
v = odzx

IS a probaility measure and & is a convex function. Assumption: [xzdo = 0.
Well-posedness : D. Cordero-Erausquin, B. Klartag, 2015.

Approach: ® is a maximum point of

J(f) = Iog/e_f*dx—/fdu.

J is concave (Brunn-Minkowski inequality)



Another transportational functional for KE equation

F. Santambrogio, 2015 p = e—® gives minimum to the functional

1 1
F(p) = = W3 (v, pda) + 3 [ 22 da + [ plog pda.

Jis not convex, but displacement convex.

Gaussian version of this functional (K., E. Kosov; [2017])

1
Fr(p) = —§W22(g v, p )+ /plogp dry,

where

1
(271')%
g-~,p-7y are probability measures.

1.2
_ —5|x
v = e 2||d:13,

(1)



Spherical variational functional

Introduce the following Kantorovich functional on S"1:

KGuo)=_min [ ey,

where
1

IOg W? <£U,y> >0

400, (z,y) <O0.

Entropy functional (o is the probablity uniform measure on S7—1:)

c(z,y) = {

_ ) Jplogpdo, if m=p-o
Ent(m) = { +o0, otherwise.

Theorem ( K. [2018]) The minimizers of the functional

F(r) = Bnt(vr) — K ») (2)

are solutions to the log-Minkowski problem for pu.



Displacement convexity

The strict displacement convexity of F' on the space of measures would imply
uniqueness of solution to the log-Minkowski problem.

Transportation inequalities

M. Talagrand (1999)

1
§W22(%g -7v) < Enty(g),
]2
whre v = —L ¢ 2 dx, Enty(g9) = [gloggdy.

(2m)2

M. Fathi (2018), strong transportation inequality

Assume that f .-~ has zero mean. Then

1
§W22(f -v,9-7) < Enty(f) + Enty(9).



The proof of Fathi relies on the Kantorovich duality and the following result
(functional Blaschke-Santald inequality).

Theorem ( S. Artstein, B. Klartag, V. Milman, 2006). Let f(x) >
0, g(y) > O satisfy

f(2)g(y) < e\,
Assume that [zf(x) = 0. Then

|, f@dz [ g@)dy < (2m)"



Strong transportation inequality for s71

Let u, v — be even probability measures on S™ 1. Then

K(u,v) < “Ent(u) + Ent(v). (3)

Proof:

Kantorovich-type duality for the functional K (V. Oliker, 2007)

K(u,v) = sup(/ log rdu — / log hdz/),
h,r

where h,r are support and radial functional of a convex body <2.

n/log rdp < /(nlog’r — /T"da)d,u—l— IOg/rnda
By the Young inequality zy < e’ 4+ ylogy — vy

/(nlogr — /rnda)d,u < Ent(uw)

Apply the same arguments to — [ log hdv.



Finally,

1 1 1 ; 1
K(u,v) < gEnt(,u) + gEnt(y) + - log (/r da/ﬁda)

Applying

Q
/ Py = Vol( )’
Sn—1 Vol(B)

we get

o 1 Vol(£2)Vol(£2°)
/r da/—da = :
h" Vol?(B)

where 2° is the polar body to €2. The result follows from the Blaschke-Santald
inequality

Vol(Q2)Vol(Q2°) <1
Vol2(B) -



