Limit theorems for Poisson-Delaunay tessellation

Anna Gusakova (Ruhr University, Bochum)
joint work with
Chtistoph Thäle

July 5, 2019

Motivation

General set-up:

- let X_{0}, \ldots, X_{k} be some random n-dimensional vectors;
- consider a random polytope

$$
P_{n, k}:=\operatorname{conv}\left(X_{0}, \ldots, X_{k}\right)
$$

```
Questions
Investigate the probabilistic behaviour of the volume \(\operatorname{vol}\left(P_{n, k}\right)\) of the random polytope \(P_{n, k}\) as \(k\) or/and \(n\) tend to infinity, e.g.
- Does this random variable fulfils a central limit theorem?
- Does this random variable fulfils a Berrv-Esseen bound?
```

- etc.

Motivation

General set-up:

- let X_{0}, \ldots, X_{k} be some random n-dimensional vectors;
- consider a random polytope

$$
P_{n, k}:=\operatorname{conv}\left(X_{0}, \ldots, X_{k}\right)
$$

Questions

Investigate the probabilistic behaviour of the volume $\operatorname{vol}\left(P_{n, k}\right)$ of the random polytope $P_{n, k}$ as k or/and n tend to infinity, e.g.

- Does this random variable fulfils a central limit theorem?
- Does this random variable fulfils a Berry-Esseen bound?
- etc.

Central limit theorem and Berry-Esseen bound

Let N be a standard Gaussian random variable.

Definition

We say that a sequence of real-valued random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ satisfying $\mathbb{E}\left|X_{n}\right|^{2}<\infty$ for all $n \in \mathbb{N}$ fulfils a central limit theorem if

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\operatorname{Var} X_{n}}} \xrightarrow{d} N, \quad n \rightarrow \infty .
$$

Definition

We say that a sequence of real-valued random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ satisfying $\mathbb{E}\left|X_{n}\right|^{2}<\infty$ for all $n \in \mathbb{N}$ fulfils Berry-Esseen bound with speed $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ if

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\operatorname{Var} X_{n}}} \leq t\right)-\mathbb{P}(N \leq t)\right| \leq c \epsilon_{n}
$$

where $c>0$ is a constant not depending on n.

Example of results

- Ruben (1977): let X_{0}, \ldots, X_{k} be i.i.d. and distributed uniformly inside in the n-dimensional unit ball. Then the random variable $k!\operatorname{vol}\left(P_{n, k}\right)$ fulfils central limit theorem as $n \rightarrow \infty$.
 hence, central limit theorem as $k \rightarrow \infty$. according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let $k=k(n) \leq n$ be some arbitrary sequence of integers. Then the random variable log'n! vol'('Pn,k)' fulfils Berry-Esseen bound and, hence, central limit theorem.

Example of results

- Ruben (1977): let X_{0}, \ldots, X_{k} be i.i.d. and distributed uniformly inside in the n-dimensional unit ball. Then the random variable $k!\operatorname{vol}\left(P_{n, k}\right)$ fulfils central limit theorem as $n \rightarrow \infty$.
- Vu (2006): let X_{0}, \ldots, X_{k} be i.i.d. and distributed uniformly inside some smooth convex body K. Then the random variable $\operatorname{vol}\left(P_{n, k}\right)$ fulfils Berry-Esseen bound and, hence, central limit theorem as $k \rightarrow \infty$.
- Grote, Kabluchko, Thäle (2019): let $X_{0}, \ldots, X_{k}, k \leq n$ be i.i.d. and distributed according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let $k=k(n) \leq n$ be some arbitrary sequence of integers. Then the random variable $\log \left(n!\operatorname{vol}\left(P_{n, k}\right)\right)$ fulfils Berry-Esseen bound and, hence, central limit theorem.

Example of results

- Ruben (1977): let X_{0}, \ldots, X_{k} be i.i.d. and distributed uniformly inside in the n-dimensional unit ball. Then the random variable $k!\operatorname{vol}\left(P_{n, k}\right)$ fulfils central limit theorem as $n \rightarrow \infty$.
- Vu (2006): let X_{0}, \ldots, X_{k} be i.i.d. and distributed uniformly inside some smooth convex body K. Then the random variable $\operatorname{vol}\left(P_{n, k}\right)$ fulfils Berry-Esseen bound and, hence, central limit theorem as $k \rightarrow \infty$.
- Grote, Kabluchko, Thäle (2019): let $X_{0}, \ldots, X_{k}, k \leq n$ be i.i.d. and distributed according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let $k=k(n) \leq n$ be some arbitrary sequence of integers. Then the random variable $\log \left(n!\operatorname{vol}\left(P_{n, k}\right)\right)$ fulfils Berry-Esseen bound and, hence, central limit theorem.

Stationary Poisson point process in \mathbb{R}^{n}

Definition

Stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^{n}$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma \lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_{1}, \ldots, A_{m} random variables $\eta\left(A_{1}\right), \ldots, \eta\left(A_{m}\right)$ are independent.

Stationary Poisson point process in \mathbb{R}^{n}

Definition

Stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^{n}$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma \lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_{1}, \ldots, A_{m} random variables $\eta\left(A_{1}\right), \ldots, \eta\left(A_{m}\right)$ are independent.

Stationary Poisson point process in \mathbb{R}^{n}

Definition

Stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^{n}$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma \lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_{1}, \ldots, A_{m} random variables $\eta\left(A_{1}\right), \ldots, \eta\left(A_{m}\right)$ are independent.

Stationary Poisson point process in \mathbb{R}^{n}

Definition

Stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^{n}$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma \lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_{1}, \ldots, A_{m} random variables $\eta\left(A_{1}\right), \ldots, \eta\left(A_{m}\right)$ are independent.

Stationary Poisson point process in \mathbb{R}^{n}

Definition

Stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^{n}$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma \lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_{1}, \ldots, A_{m} random variables $\eta\left(A_{1}\right), \ldots, \eta\left(A_{m}\right)$ are independent.

Poisson-Delaunay tessellation

Let η be a stationary Poisson point process in \mathbb{R}^{n} with intensity $\gamma \in(0, \infty)$.

Poisson Delaunay Tesselation

For a $(n+1)$-tuple $\left(x_{0}, \ldots, x_{n}\right)$ of distinct points of η we denote by $B\left(x_{0}, \ldots, x_{n}\right)$ the almost surely uniquely determined ball having the points x_{0}, \ldots, x_{n} on its boundary.

Poisson Delaunay Tesselation

The points x_{0}, \ldots, x_{n} then form a Delaunay simplex $\operatorname{conv}\left(x_{0}, \ldots, x_{n}\right)$ whenever $B\left(x_{0}, \ldots, x_{n}\right) \cap \eta=\left\{x_{0}, \ldots, x_{n}\right\}$.

Poisson Delaunay tesselation

The collection \mathscr{D} of all Delaunay simplices is the Poisson-Delaunay tessellation of \mathbb{R}^{n}.

Poisson Delaunay tesselation

$$
\gamma=0.3
$$

$\gamma=0.5$

$\gamma=1$

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c. - Denote by Simpl $_{n}$ the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$.

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c.
- Denote by Simpl $_{n}$ the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$. σ-field $\mathcal{B}\left(\right.$ Simpl $\left._{n}\right)$. Then, we define a probability measure \mathbb{P}_{u}^{0} as follows

By $Z_{n, \mu}$ we denote a random simplex with distribution \mathbb{P}_{μ}^{0}

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c.
- Denote by Simpl $_{n}$ the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$.

Endowing Simpl $_{n}$ with the usual Hausdorff distance, we can define on Simpl $_{n}$ the Borel σ-field $\mathcal{B}\left(\operatorname{Simpl}_{n}\right)$. Then, we define a probability measure \mathbb{P}_{μ}^{0} as follows

By $Z_{n, \mu}$ we denote a random simplex with distribution \mathbb{P}_{μ}^{0}.
Interesting special cases: Z_{-1} is a typical Delaunay simplex; Z_{0} is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c.
- Denote by Simpl $_{n}$ the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$.

Endowing Simpl ${ }_{n}$ with the usual Hausdorff distance, we can define on Simpl ${ }_{n}$ the Borel σ-field $\mathcal{B}\left(\right.$ Simpl $\left._{n}\right)$. Then, we define a probability measure \mathbb{P}_{μ}^{0} as follows

$$
\mathbb{P}_{\mu}^{0}(A)=\frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{O} \\ z(c) \in[0,1]^{n}}} 1\{c-z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \quad A \in \mathcal{B}\left(\text { Simpl }_{n}\right) .
$$

By $Z_{n, \mu}$ we denote a random simplex with distribution \mathbb{P}_{μ}^{0}.
Interesting special cases: Z_{-1} is a typical Delaunay simplex; Z_{0} is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0 .

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_{n} the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$.

Endowing Simpl ${ }_{n}$ with the usual Hausdorff distance, we can define on Simpl $_{n}$ the Borel σ-field $\mathcal{B}\left(\operatorname{Simpl}_{n}\right)$. Then, we define a probability measure \mathbb{P}_{μ}^{0} as follows

$$
\mathbb{P}_{\mu}^{0}(A)=\frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{O} \\ z(c) \in[0,1]^{n}}} 1\{c-z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \quad A \in \mathcal{B}\left(\text { Simpl }_{n}\right)
$$

By $Z_{n, \mu}$ we denote a random simplex with distribution \mathbb{P}_{μ}^{0}.
Interesting special cases: Z_{-1} is a typical Delaunay simplex; Z_{0} is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0 .

Investigate the probabilistic behaviour of the \log-volume $Y_{n, \mu}:=\log \left(\operatorname{vol}\left(Z_{n, \mu}\right)\right)$ of the random simplex Z_{n}, as n or/and μ tend to infinity.

Weighted simplices in Poisson-Delaunay tessellation

- Consider a parameter $\mu \in(-2, \infty)$;
- Denote by $z(c)$ the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_{n} the set of all simplices c in \mathbb{R}^{n} with $z(c)=0$.

Endowing Simpl ${ }_{n}$ with the usual Hausdorff distance, we can define on Simpl $_{n}$ the Borel σ-field $\mathcal{B}\left(\operatorname{Simpl}_{n}\right)$. Then, we define a probability measure \mathbb{P}_{μ}^{0} as follows

$$
\mathbb{P}_{\mu}^{0}(A)=\frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{O} \\ z(c) \in[0,1]^{n}}} \mathbf{1}\{c-z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \quad A \in \mathcal{B}\left(\text { Simpl }_{n}\right)
$$

By $Z_{n, \mu}$ we denote a random simplex with distribution \mathbb{P}_{μ}^{0}.
Interesting special cases: Z_{-1} is a typical Delaunay simplex; Z_{0} is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0 .

Aim

Investigate the probabilistic behaviour of the \log-volume $Y_{n, \mu}:=\log \left(\operatorname{vol}\left(Z_{n, \mu}\right)\right)$ of the random simplex $Z_{n, \mu}$ as n or/and μ tend to infinity.

Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):

- $n \rightarrow \infty$ and μ is fixed;
- $n \rightarrow \infty$ and $\mu=o(n)$;
- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$;
- $n \rightarrow \infty$ and $n-\mu=o(n)$;

Theorem

Sunnose that n and μ are such that we are in one of the regimes described above. Then a sequence of random variables $\left(Y_{n, \mu}\right)_{n \in \mathbb{N}}$ fulfils Berry-Esseen bound with speed

$$
\begin{aligned}
& \epsilon_{n}=\frac{2}{(\mu+3) \sqrt{\log n}}: \mu=o(n) \text { or } \mu \text { is fixed, } \\
& \epsilon_{n}=\frac{1}{n}: \mu=\alpha n \text { or } n-\mu=o(n) .
\end{aligned}
$$

A sequence of random variables $\left(Y_{n, \mu}\right)_{n \in \mathbb{N}}$ fulfils central limit theorem.

Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):

- $n \rightarrow \infty$ and μ is fixed;
- $n \rightarrow \infty$ and $\mu=o(n)$;
- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$;
- $n \rightarrow \infty$ and $n-\mu=o(n)$;

Theorem

Suppose that n and μ are such that we are in one of the regimes described above. Then a sequence of random variables $\left(Y_{n, \mu}\right)_{n \in \mathbb{N}}$ fulfils Berry-Esseen bound with speed

$$
\begin{aligned}
& \epsilon_{n}=\frac{2}{(\mu+3) \sqrt{\log n}}: \mu=o(n) \text { or } \mu \text { is fixed } \\
& \epsilon_{n}=\frac{1}{n}: \mu=\alpha n \text { or } n-\mu=o(n)
\end{aligned}
$$

A sequence of random variables $\left(Y_{n, \mu}\right)_{n \in \mathbb{N}}$ fulfils central limit theorem.

Asymptotic for mathematical expectation and variance

- $n \rightarrow \infty$ and μ is fixed:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \text { Var } Y_{n, \mu}=\frac{1}{2} \log n+O(1) .
$$

- $n \rightarrow \infty$ and $\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+o(n \log n) ; \quad \text { Var } Y_{n, \mu}=\frac{1}{2} \log n+o(\log n) .
$$

Asymptotic for mathematical expectation and variance

- $n \rightarrow \infty$ and μ is fixed:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+O(1)
$$

- $n \rightarrow \infty$ and $\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+o(n \log n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+o(\log n)
$$

- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$:

Asymptotic for mathematical expectation and variance

- $n \rightarrow \infty$ and μ is fixed:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+O(1)
$$

- $n \rightarrow \infty$ and $\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+o(n \log n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+o(\log n)
$$

- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log \left(1+\frac{1}{\alpha}\right)-\frac{1}{2(1+\alpha)}+O\left(\frac{1}{n}\right)
$$

Asymptotic for mathematical expectation and variance

- $n \rightarrow \infty$ and μ is fixed:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+O(1)
$$

- $n \rightarrow \infty$ and $\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+o(n \log n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+o(\log n)
$$

- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log \left(1+\frac{1}{\alpha}\right)-\frac{1}{2(1+\alpha)}+O\left(\frac{1}{n}\right)
$$

- $n \rightarrow \infty$ and $n-\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log 2-\frac{1}{4}+O\left(\frac{1}{n}\right)
$$

Asymptotic for mathematical expectation and variance

- $n \rightarrow \infty$ and μ is fixed:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log n+O(1)
$$

- $n \rightarrow \infty$ and $\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+o(n \log n) ; \quad \text { Var } Y_{n, \mu}=\frac{1}{2} \log n+o(\log n)
$$

- $n \rightarrow \infty$ and $\mu=\alpha n$ for some fixed $\alpha>0$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{2} \log \left(1+\frac{1}{\alpha}\right)-\frac{1}{2(1+\alpha)}+O\left(\frac{1}{n}\right)
$$

- $n \rightarrow \infty$ and $n-\mu=o(n)$:

$$
\mathbb{E} Y_{n, \mu}=-\frac{n}{2} \log n+O(n) ; \quad \text { Var } Y_{n, \mu}=\frac{1}{2} \log 2-\frac{1}{4}+O\left(\frac{1}{n}\right)
$$

- n is fixed and $\mu \rightarrow \infty$:

$$
\mathbb{E} Y_{n, \mu}=\frac{1}{2} \log \mu+O(1) ; \quad \operatorname{Var} Y_{n, \mu}=\frac{1}{\mu}+O\left(\frac{1}{\mu^{2}}\right)
$$

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Theorem
For any $\mu \in(-2, \infty)$ we have

$$
\xi^{n}(1-\xi)\left[\gamma \kappa_{n} n!\operatorname{vol}\left(Z_{n, \mu}\right)\right]^{2} \stackrel{d}{=} \rho^{2} \prod_{i=1}^{n} \xi_{i}
$$

where $\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right), \xi_{i} \sim \operatorname{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right), \rho \sim \operatorname{Gamma}(n+\mu+1,1)$ are independent random variables, independent of $\operatorname{vol}\left(Z_{n, \mu}\right)$.

$$
\text { Given a simplex } c \in \operatorname{Simpl}_{n} \text { denote by } R(c) \text { the radius of the circumsphere of } c \text {. }
$$

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Theorem

For any $\mu \in(-2, \infty)$ we have

$$
\xi^{n}(1-\xi)\left[\gamma \kappa_{n} n!\operatorname{vol}\left(Z_{n, \mu}\right)\right]^{2} \stackrel{d}{=} \rho^{2} \prod_{i=1}^{n} \xi_{i},
$$

where $\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right), \xi_{i} \sim \operatorname{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right), \rho \sim \operatorname{Gamma}(n+\mu+1,1)$ are independent random variables, independent of $\operatorname{vol}\left(Z_{n, \mu}\right)$.

Given a simplex $c \in \operatorname{Simpl}_{n}$ denote by $R(c)$ the radius of the circumsphere of c.
\qquad
\square

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Theorem

For any $\mu \in(-2, \infty)$ we have

$$
\xi^{n}(1-\xi)\left[\gamma \kappa_{n} n!\operatorname{vol}\left(Z_{n, \mu}\right)\right]^{2} \stackrel{d}{=} \rho^{2} \prod_{i=1}^{n} \xi_{i},
$$

where $\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right), \xi_{i} \sim \operatorname{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right), \rho \sim \operatorname{Gamma}(n+\mu+1,1)$ are independent random variables, independent of $\operatorname{vol}\left(Z_{n, \mu}\right)$.

Given a simplex $c \in \operatorname{Simpl}_{n}$ denote by $R(c)$ the radius of the circumsphere of c.

Lemma

For any $\mu \in(-2, \infty)$ we have

$$
\gamma \kappa_{n} R\left(Z_{n, \mu}\right)^{d} \stackrel{d}{=} \rho,
$$

where $\rho \sim \operatorname{Gamma}(n+\mu+1,1)$.

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Let $X_{0}, \ldots, X_{k}, k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$
S_{n, k}:=\operatorname{conv}\left(X_{0}, \ldots, X_{k}\right)
$$

and denote by $D_{n, k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_{0}, \ldots, X_{k}.

Corollary
For any integer $\mu \in(-2, \infty)$ we have
where $\rho \sim \operatorname{Gamma}(n+\mu+1,1)$ is independent of $S_{n+\mu+2, n}$ and
$\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n, \mu}$.

- $\left(\frac{\rho}{\gamma k_{n}}\right)^{2} \stackrel{d}{=} R\left(Z_{n, \mu}\right)^{2 d}$ (by Lemma above);

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Let $X_{0}, \ldots, X_{k}, k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$
S_{n, k}:=\operatorname{conv}\left(X_{0}, \ldots, X_{k}\right)
$$

and denote by $D_{n, k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_{0}, \ldots, X_{k}.

Corollary

For any integer $\mu \in(-2, \infty)$ we have

$$
\xi^{n} \operatorname{vol}\left(Z_{n, \mu}\right)^{2} \stackrel{d}{=}\left(\frac{\rho}{\gamma \kappa_{n}}\right)^{2} \operatorname{vol}\left(S_{n+\mu+2, n}\right)^{2},
$$

where $\rho \sim \operatorname{Gamma}(n+\mu+1,1)$ is independent of $S_{n+\mu+2, n}$ and
$\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n, \mu}$.

- $\left(\frac{\rho}{\gamma k_{n}}\right)^{2} \stackrel{d}{=} R\left(Z_{n, \mu}\right)^{2 d}$ (by Lemma above);
- $\xi^{n} \stackrel{d}{=} D_{n+\mu+2, n}^{2 n}$ (by Grote, Kabluchko, Thäle, 2019)

Probabilistic representation for the distribution of the volume of random simplex $Z_{n, \mu}$

Let $X_{0}, \ldots, X_{k}, k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$
S_{n, k}:=\operatorname{conv}\left(X_{0}, \ldots, X_{k}\right)
$$

and denote by $D_{n, k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_{0}, \ldots, X_{k}.

Corollary

For any integer $\mu \in(-2, \infty)$ we have

$$
\xi^{n} \operatorname{vol}\left(Z_{n, \mu}\right)^{2} \stackrel{d}{=}\left(\frac{\rho}{\gamma \kappa_{n}}\right)^{2} \operatorname{vol}\left(S_{n+\mu+2, n}\right)^{2},
$$

where $\rho \sim \operatorname{Gamma}(n+\mu+1,1)$ is independent of $S_{n+\mu+2, n}$ and $\xi \sim \operatorname{Beta}\left(\frac{n^{2}+n+n \mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n, \mu}$.

- $\left(\frac{\rho}{\gamma \kappa_{n}}\right)^{2} \stackrel{d}{=} R\left(Z_{n, \mu}\right)^{2 d}$ (by Lemma above);
- $\xi^{n} \stackrel{d}{=} D_{n+\mu+2, n}^{2 n}$ (by Grote, Kabluchko, Thäle, 2019).

Thank you for attention!

