Limit theorems for Poisson-Delaunay tessellation

Anna Gusakova (Ruhr University, Bochum)

joint work with

Chtistoph Thäle

July 5, 2019

Motivation

General set-up:

- let X_0, \ldots, X_k be some random *n*-dimensional vectors;
- consider a random polytope

$$P_{n,k} := \operatorname{conv}(X_0,\ldots,X_k);$$

Questions

Investigate the probabilistic behaviour of the volume $vol(P_{n,k})$ of the random polytope $P_{n,k}$ as k or/and n tend to infinity, e.g.

- Does this random variable fulfils a central limit theorem?
- Does this random variable fulfils a Berry-Esseen bound?

• etc.

Motivation

General set-up:

- let X_0, \ldots, X_k be some random *n*-dimensional vectors;
- consider a random polytope

$$P_{n,k} := \operatorname{conv}(X_0,\ldots,X_k);$$

Questions

Investigate the probabilistic behaviour of the volume $vol(P_{n,k})$ of the random polytope $P_{n,k}$ as k or/and n tend to infinity, e.g.

- Does this random variable fulfils a central limit theorem?
- Does this random variable fulfils a Berry-Esseen bound?
- etc.

Central limit theorem and Berry-Esseen bound

Let N be a standard Gaussian random variable.

Definition

We say that a sequence of real-valued random variables $(X_n)_{n \in \mathbb{N}}$ satisfying $\mathbb{E} |X_n|^2 < \infty$ for all $n \in \mathbb{N}$ fulfils a **central limit theorem** if

$$\frac{X_n - \mathbb{E} X_n}{\sqrt{\operatorname{Var} X_n}} \stackrel{d}{\to} N, \quad n \to \infty.$$

Definition

We say that a sequence of real-valued random variables $(X_n)_{n \in \mathbb{N}}$ satisfying $\mathbb{E} |X_n|^2 < \infty$ for all $n \in \mathbb{N}$ fulfils **Berry-Esseen bound** with speed $(\epsilon_n)_{n \in \mathbb{N}}$ if

$$\sup_{t\in\mathbb{R}}\left|\mathbb{P}\left(\frac{X_n-\mathbb{E}\,X_n}{\sqrt{\operatorname{Var} X_n}}\leq t\right)-\mathbb{P}\left(N\leq t\right)\right|\leq c\,\epsilon_n,$$

where c > 0 is a constant not depending on n.

Example of results

- Ruben (1977): let X_0, \ldots, X_k be i.i.d. and distributed uniformly inside in the *n*-dimensional unit ball. Then the random variable $k! \operatorname{vol}(P_{n,k})$ fulfils central limit theorem as $n \to \infty$.
- Vu (2006): let X_0, \ldots, X_k be i.i.d. and distributed uniformly inside some smooth convex body K. Then the random variable $vol(P_{n,k})$ fulfils Berry-Esseen bound and, hence, central limit theorem as $k \to \infty$.
- Grote, Kabluchko, Thäle (2019): let X_0, \ldots, X_k , $k \le n$ be i.i.d. and distributed according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let $k = k(n) \le n$ be some arbitrary sequence of integers. Then the random variable $\log(n! \operatorname{vol}(P_{n,k}))$ fulfils Berry-Esseen bound and, hence, central limit theorem.

Example of results

- Ruben (1977): let X_0, \ldots, X_k be i.i.d. and distributed uniformly inside in the *n*-dimensional unit ball. Then the random variable $k! \operatorname{vol}(P_{n,k})$ fulfils central limit theorem as $n \to \infty$.
- Vu (2006): let X₀,..., X_k be i.i.d. and distributed uniformly inside some smooth convex body K. Then the random variable vol(P_{n,k}) fulfils Berry-Esseen bound and, hence, central limit theorem as k → ∞.
- Grote, Kabluchko, Thäle (2019): let X_0, \ldots, X_k , $k \le n$ be i.i.d. and distributed according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let $k = k(n) \le n$ be some arbitrary sequence of integers. Then the random variable $\log(n! \operatorname{vol}(P_{n,k}))$ fulfils Berry-Esseen bound and, hence, central limit theorem.

Example of results

- Ruben (1977): let X_0, \ldots, X_k be i.i.d. and distributed uniformly inside in the *n*-dimensional unit ball. Then the random variable $k! \operatorname{vol}(P_{n,k})$ fulfils central limit theorem as $n \to \infty$.
- Vu (2006): let X₀,..., X_k be i.i.d. and distributed uniformly inside some smooth convex body K. Then the random variable vol(P_{n,k}) fulfils Berry-Esseen bound and, hence, central limit theorem as k → ∞.
- Grote, Kabluchko, Thäle (2019): let X₀,..., X_k, k ≤ n be i.i.d. and distributed according to one of the three models (Gaussian distribution, Beta distribution, uniform on unit sphere). Let k = k(n) ≤ n be some arbitrary sequence of integers. Then the random variable log(n! vol(P_{n,k})) fulfils Berry-Esseen bound and, hence, central limit theorem.

イロト 不得 トイヨト イヨト

Definition

Stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^n$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma\lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_1, \ldots, A_m random variables $\eta(A_1), \ldots, \eta(A_m)$ are independent.

< ロ > < 同 > < 回 > < 回 >

Definition

Stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^n$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma\lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_1, \ldots, A_m random variables $\eta(A_1), \ldots, \eta(A_m)$ are independent.

イロト イポト イヨト イヨ

Definition

Stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^n$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma\lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_1, \ldots, A_m random variables $\eta(A_1), \ldots, \eta(A_m)$ are independent.

イロト イポト イヨト イヨ

Definition

Stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^n$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma\lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_1, \ldots, A_m random variables $\eta(A_1), \ldots, \eta(A_m)$ are independent.

イロト イポト イヨト イヨ

Definition

Stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$ is a random counting measure η such that:

- for every Borel subset $A \in \mathbb{R}^n$ the distribution of $\eta(A)$ is Poisson with parameter $\gamma\lambda(A)$, where $\lambda(\cdot)$ is the Lebesgue measure;
- for every $m \in \mathbb{N}$ and pairwise disjoint Borel subsets A_1, \ldots, A_m random variables $\eta(A_1), \ldots, \eta(A_m)$ are independent.

< ロ > < 同 > < 回 > < 回 >

Poisson-Delaunay tessellation

Let η be a stationary Poisson point process in \mathbb{R}^n with intensity $\gamma \in (0, \infty)$.

July 5, 2019 6 / 16

Poisson Delaunay Tesselation

For a (n + 1)-tuple (x_0, \ldots, x_n) of distinct points of η we denote by $B(x_0, \ldots, x_n)$ the almost surely uniquely determined ball having the points x_0, \ldots, x_n on its boundary.

July 5, 2019 7 / 16

Poisson Delaunay Tesselation

The points x_0, \ldots, x_n then form a Delaunay simplex $conv(x_0, \ldots, x_n)$ whenever $B(x_0, \ldots, x_n) \cap \eta = \{x_0, \ldots, x_n\}.$

A B A B A B A

Poisson Delaunay tesselation

The collection \mathscr{D} of all Delaunay simplices is the Poisson-Delaunay tessellation of \mathbb{R}^n .

イロン イロン イヨン イヨン

Poisson Delaunay tesselation

 $\gamma = 0.3$

 $\gamma = 0.5$

 $\gamma = 1$

• Consider a parameter $\mu \in (-2,\infty)$;

• Denote by z(c) the midpoint of the circumsphere of a simplex c.

• Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(Simpl_n)$. Then, we define a probability measure \mathbb{P}^0_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbb{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n})$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as n or/and μ tend to infinity.

- Consider a parameter $\mu \in (-2,\infty)$;
- Denote by z(c) the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(\text{Simpl}_n)$. Then, we define a probability measure \mathbb{P}^{0}_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbb{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n}).$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as *n* or/and μ tend to infinity.

- Consider a parameter $\mu \in (-2,\infty)$;
- Denote by z(c) the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(\text{Simpl}_n)$. Then, we define a probability measure \mathbb{P}^{0}_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbf{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n}).$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as *n* or/and μ tend to infinity.

July 5, 2019 11 / 16

- Consider a parameter $\mu \in (-2,\infty)$;
- Denote by z(c) the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(\text{Simpl}_n)$. Then, we define a probability measure \mathbb{P}^0_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbf{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n}).$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as *n* or/and μ tend to infinity.

- Consider a parameter $\mu \in (-2,\infty)$;
- Denote by z(c) the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(\text{Simpl}_n)$. Then, we define a probability measure \mathbb{P}^0_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbf{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n}).$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as *n* or/and μ tend to infinity.

- Consider a parameter $\mu \in (-2,\infty)$;
- Denote by z(c) the midpoint of the circumsphere of a simplex c.
- Denote by Simpl_n the set of all simplices c in \mathbb{R}^n with z(c) = 0.

Endowing Simpl_n with the usual Hausdorff distance, we can define on Simpl_n the Borel σ -field $\mathcal{B}(\text{Simpl}_n)$. Then, we define a probability measure \mathbb{P}^0_{μ} as follows

$$\mathbb{P}^{0}_{\mu}(A) = \frac{1}{\gamma_{\mu}} \mathbb{E} \sum_{\substack{c \in \mathscr{D} \\ z(c) \in [0,1]^{n}}} \mathbf{1}\{c - z(c) \in A\} \operatorname{vol}(c)^{\mu+1}, \qquad A \in \mathcal{B}(\mathsf{Simpl}_{n}).$$

By $Z_{n,\mu}$ we denote a random simplex with distribution \mathbb{P}^{0}_{μ} .

Interesting special cases: Z_{-1} is a **typical Delaunay simplex**; Z_0 is equal by distribution to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume $Y_{n,\mu} := \log(\operatorname{vol}(Z_{n,\mu}))$ of the random simplex $Z_{n,\mu}$ as *n* or/and μ tend to infinity.

Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):

- $n \to \infty$ and μ is fixed;
- $n \to \infty$ and $\mu = o(n)$;
- $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$;
- $n \to \infty$ and $n \mu = o(n)$;

Theorem

Suppose that n and μ are such that we are in one of the regimes described above. Then a sequence of random variables $(Y_{n,\mu})_{n \in \mathbb{N}}$ fulfils **Berry-Esseen bound** with speed

$$\epsilon_n = \frac{2}{(\mu+3)\sqrt{\log n}} : \mu = o(n) \text{ or } \mu \text{ is fixed},$$

$$\epsilon_n = \frac{1}{n} : \mu = \alpha n \text{ or } n - \mu = o(n).$$

A sequence of random variables $(Y_{n,\mu})_{n\in\mathbb{N}}$ fulfils central limit theorem.

Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):

- $n \to \infty$ and μ is fixed;
- $n \to \infty$ and $\mu = o(n)$;
- $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$;
- $n \to \infty$ and $n \mu = o(n)$;

Theorem

Suppose that n and μ are such that we are in one of the regimes described above. Then a sequence of random variables $(Y_{n,\mu})_{n \in \mathbb{N}}$ fulfils **Berry-Esseen bound** with speed

$$\epsilon_n = \frac{2}{(\mu+3)\sqrt{\log n}} : \mu = o(n) \text{ or } \mu \text{ is fixed},$$

$$\epsilon_n = \frac{1}{n} : \mu = \alpha n \text{ or } n - \mu = o(n).$$

A sequence of random variables $(Y_{n,\mu})_{n\in\mathbb{N}}$ fulfils central limit theorem.

• $n \to \infty$ and μ is fixed:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + O(1).$

•
$$n \to \infty$$
 and $\mu = o(n)$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + o(n \log n); \qquad \text{Var } Y_{n,\mu} = \frac{1}{2} \log n + o(\log n).$$

• $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n); \qquad \text{Var } Y_{n,\mu} = \frac{1}{2} \log \left(1 + \frac{1}{\alpha}\right) - \frac{1}{2(1+\alpha)} + O\left(\frac{1}{n}\right)$$

• $n o \infty$ and $n - \mu = o(n)$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2}\log n + O(n);$$
 Var $Y_{n,\mu} = \frac{1}{2}\log 2 - \frac{1}{4} + O\left(\frac{1}{n}\right).$

• *n* is fixed and $\mu \to \infty$:

$$\mathbb{E} Y_{n,\mu} = \frac{1}{2} \log \mu + O(1);$$
 Var $Y_{n,\mu} = \frac{1}{\mu} + O\left(\frac{1}{\mu^2}\right)$

• $n \to \infty$ and μ is fixed:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + O(1).$

•
$$n \to \infty$$
 and $\mu = o(n)$:
 $\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + o(n \log n);$ $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + o(\log n).$

• $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2}\log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2}\log\left(1+\frac{1}{\alpha}\right) - \frac{1}{2(1+\alpha)} + O\left(\frac{1}{n}\right)$

• $n \to \infty$ and $n - \mu = o(n)$

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2}\log n + O(n);$$
 Var $Y_{n,\mu} = \frac{1}{2}\log 2 - \frac{1}{4} + O\left(\frac{1}{n}\right).$

• *n* is fixed and $\mu \to \infty$:

$$\mathbb{E} Y_{n,\mu} = \frac{1}{2} \log \mu + O(1); \quad \text{Var } Y_{n,\mu} = \frac{1}{\mu} + O\left(\frac{1}{\mu^2}\right)$$

(日)
 (日)

• $n \to \infty$ and μ is fixed:

0

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + O(1).$

$$\mathbb{E} \ n \to \infty \text{ and } \mu = o(n):$$
$$\mathbb{E} \ Y_{n,\mu} = -\frac{n}{2} \log n + o(n \log n); \qquad \text{Var } Y_{n,\mu} = \frac{1}{2} \log n + o(\log n).$$

• $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2}\log n + O(n); \qquad \operatorname{Var} Y_{n,\mu} = \frac{1}{2}\log\left(1+\frac{1}{\alpha}\right) - \frac{1}{2(1+\alpha)} + O\left(\frac{1}{n}\right)$$

• $n \to \infty$ and $n - \mu = o(n)$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2}\log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2}\log 2 - \frac{1}{4} + O\left(\frac{1}{n}\right).$

• *n* is fixed and $\mu \to \infty$:

$$\mathbb{E} Y_{n,\mu} = \frac{1}{2} \log \mu + O(1); \quad \text{Var } Y_{n,\mu} = \frac{1}{\mu} + O\left(\frac{1}{\mu^2}\right)$$

(日) (四) (三) (三)

• $n \to \infty$ and μ is fixed:

0

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + O(1).$

$$\mathbb{E} \ n \to \infty \text{ and } \mu = o(n):$$
$$\mathbb{E} \ Y_{n,\mu} = -\frac{n}{2} \log n + o(n \log n); \qquad \text{Var } Y_{n,\mu} = \frac{1}{2} \log n + o(\log n).$$

• $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log \left(1 + \frac{1}{\alpha}\right) - \frac{1}{2(1+\alpha)} + O\left(\frac{1}{n}\right)$

•
$$n \to \infty$$
 and $n - \mu = o(n)$:
 $\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$ $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log 2 - \frac{1}{2} + O\left(\frac{1}{2}\right).$

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n); \quad \text{Var } Y_{n,\mu} = \frac{1}{2} \log 2 - \frac{1}{4} + O\left(\frac{1}{n}\right).$$

• *n* is fixed and
$$\mu \to \infty$$
:

$$\mathbb{E} Y_{n,\mu} = \frac{1}{2} \log \mu + O(1); \qquad \operatorname{Var} Y_{n,\mu} = \frac{1}{\mu} + O\left(\frac{1}{\mu^2}\right).$$

• $n \to \infty$ and μ is fixed:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$$
 $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + O(1).$

•
$$n \to \infty$$
 and $\mu = o(n)$:
 $\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + o(n \log n);$ $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log n + o(\log n).$

• $n \to \infty$ and $\mu = \alpha n$ for some fixed $\alpha > 0$:

$$\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n); \qquad \text{Var } Y_{n,\mu} = \frac{1}{2} \log \left(1 + \frac{1}{\alpha}\right) - \frac{1}{2(1+\alpha)} + O\left(\frac{1}{n}\right)$$

•
$$n \to \infty$$
 and $n - \mu = o(n)$:
 $\mathbb{E} Y_{n,\mu} = -\frac{n}{2} \log n + O(n);$ $\operatorname{Var} Y_{n,\mu} = \frac{1}{2} \log 2 - \frac{1}{4} + O\left(\frac{1}{n}\right).$

• *n* is fixed and
$$\mu \to \infty$$

$$\mathbb{E} Y_{n,\mu} = \frac{1}{2} \log \mu + O(1); \qquad \operatorname{Var} Y_{n,\mu} = \frac{1}{\mu} + O\left(\frac{1}{\mu^2}\right).$$

Theorem

For any $\mu \in (-2,\infty)$ we have

$$\xi^{n}(1-\xi)\left[\gamma\kappa_{n}n!\operatorname{vol}(Z_{n,\mu})\right]^{2}\stackrel{d}{=}\rho^{2}\prod_{i=1}^{n}\xi_{i},$$

where $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$, $\xi_i \sim \text{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right)$, $\rho \sim \text{Gamma}(n+\mu+1, 1)$ are independent random variables, independent of $\text{vol}(Z_{n,\mu})$.

Given a simplex $c \in \text{Simpl}_n$ denote by R(c) the radius of the circumsphere of c.

Lemma

For any $\mu \in (-2,\infty)$ we have

$$\gamma \kappa_n R(Z_{n,\mu})^d \stackrel{d}{=} \rho,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$.

July 5, 2019 14 / 16

Theorem

For any $\mu \in (-2,\infty)$ we have

$$\xi^{n}(1-\xi)\left[\gamma\kappa_{n}n!\operatorname{vol}(Z_{n,\mu})\right]^{2}\stackrel{d}{=}\rho^{2}\prod_{i=1}^{n}\xi_{i},$$

where $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$, $\xi_i \sim \text{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right)$, $\rho \sim \text{Gamma}(n+\mu+1, 1)$ are independent random variables, independent of $\text{vol}(Z_{n,\mu})$.

Given a simplex $c \in \text{Simpl}_n$ denote by R(c) the radius of the circumsphere of c.

Lemma

For any
$$\mu\in(-2,\infty)$$
 we have

$$\gamma \kappa_n R(Z_{n,\mu})^d \stackrel{d}{=} \rho,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$.

Theorem

For any $\mu \in (-2,\infty)$ we have

$$\xi^{n}(1-\xi)\left[\gamma\kappa_{n}n!\operatorname{vol}(Z_{n,\mu})\right]^{2}\stackrel{d}{=}\rho^{2}\prod_{i=1}^{n}\xi_{i},$$

where $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$, $\xi_i \sim \text{Beta}\left(\frac{i+\mu+1}{2}, \frac{n-i+1}{2}\right)$, $\rho \sim \text{Gamma}(n+\mu+1, 1)$ are independent random variables, independent of $\text{vol}(Z_{n,\mu})$.

Given a simplex $c \in \text{Simpl}_n$ denote by R(c) the radius of the circumsphere of c.

Lemma

For any
$$\mu \in (-2,\infty)$$
 we have

$$\gamma \kappa_n R(Z_{n,\mu})^d \stackrel{d}{=} \rho,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$.

Let X_0, \ldots, X_k , $k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$S_{n,k} := \operatorname{conv}(X_0,\ldots,X_k)$$

and denote by $D_{n,k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_0, \ldots, X_k .

Corollary

For any integer $\mu \in (-2, \infty)$ we have

$$\xi^n \operatorname{vol}(Z_{n,\mu})^2 \stackrel{d}{=} \left(\frac{\rho}{\gamma \kappa_n}\right)^2 \operatorname{vol}(S_{n+\mu+2,n})^2,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$ is independent of $S_{n+\mu+2,n}$ and $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n,\mu}$.

•
$$\left(\frac{\rho}{\gamma\kappa_n}\right)^2 \stackrel{d}{=} R(Z_{n,\mu})^{2d}$$
 (by Lemma above);

• $\xi^n \stackrel{d}{=} D^{2n}_{n+\mu+2,n}$ (by Grote, Kabluchko, Thäle, 2019).

ヘロト ヘロト ヘヨト ヘヨト

Let X_0, \ldots, X_k , $k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$S_{n,k} := \operatorname{conv}(X_0,\ldots,X_k)$$

and denote by $D_{n,k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_0, \ldots, X_k .

Corollary

For any integer $\mu \in (-2,\infty)$ we have

$$\xi^n \operatorname{vol}(Z_{n,\mu})^2 \stackrel{d}{=} \left(\frac{\rho}{\gamma \kappa_n}\right)^2 \operatorname{vol}(S_{n+\mu+2,n})^2,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$ is independent of $S_{n+\mu+2,n}$ and $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n,\mu}$.

•
$$\left(\frac{\rho}{\gamma\kappa_n}\right)^2 \stackrel{d}{=} R(Z_{n,\mu})^{2d}$$
 (by Lemma above);

• $\xi^n \stackrel{d}{=} D^{2n}_{n+\mu+2,n}$ (by Grote, Kabluchko, Thäle, 2019).

イロン イヨン イヨン イヨン 三日

Let X_0, \ldots, X_k , $k \leq n$ be i.i.d. and distributed uniformly on the unit sphere. Denote by

$$S_{n,k} := \operatorname{conv}(X_0,\ldots,X_k)$$

and denote by $D_{n,k}$ the distance from the origin to the k-dimensional affine subspace spanned by X_0, \ldots, X_k .

Corollary

For any integer $\mu \in (-2,\infty)$ we have

$$\xi^n \operatorname{vol}(Z_{n,\mu})^2 \stackrel{d}{=} \left(\frac{\rho}{\gamma \kappa_n}\right)^2 \operatorname{vol}(S_{n+\mu+2,n})^2,$$

where $\rho \sim \text{Gamma}(n + \mu + 1, 1)$ is independent of $S_{n+\mu+2,n}$ and $\xi \sim \text{Beta}\left(\frac{n^2+n+n\mu}{2}, \frac{\mu+2}{2}\right)$ is independent of $Z_{n,\mu}$.

•
$$\left(\frac{\rho}{\gamma\kappa_n}\right)^2 \stackrel{d}{=} R(Z_{n,\mu})^{2d}$$
 (by Lemma above);

• $\xi^n \stackrel{d}{=} D^{2n}_{n+\mu+2,n}$ (by Grote, Kabluchko, Thäle, 2019).

Thank you for attention!