Norms of weighted sums of log-concave random vectors

Apostolos Giannopoulos

National and Kapodistrian University of Athens

July 1, 2019

The question

Let K be a symmetric convex body in \mathbb{R}^{n}.

The question

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$.

The question

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$. If $\mathcal{C}=(C, \ldots, C)$ then we write $\|\mathbf{t}\|_{C^{s}, K}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, K}$.

The question

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$. If $\mathcal{C}=(C, \ldots, C)$ then we write $\|\mathbf{t}\|_{C^{s}, K}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, K}$.

Question (V. Milman)

To examine if, in the case $C=K$, one has that $\|\cdot\|_{K^{s}, K}$ is equivalent to the standard Euclidean norm up to a term which is logarithmic in the dimension, and in particular, if under some cotype condition on the norm induced by K to \mathbb{R}^{n} one has equivalence between $\|\cdot\|_{K^{s}, K}$ and the Euclidean norm.

Lower bounds

- Bourgain, Meyer, V. Milman and Pajor (80's) obtained the lower bound

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s}\left(\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)\right)^{\frac{1}{s n}} / \operatorname{vol}_{n}(K)^{1 / n}
$$

where $c>0$ is an absolute constant.

Lower bounds

- Bourgain, Meyer, V. Milman and Pajor (80's) obtained the lower bound

$$
\|\mathbf{t}\|_{C, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s}\left(\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)\right)^{\frac{1}{s n}} / \operatorname{vol}_{n}(K)^{1 / n}
$$

where $c>0$ is an absolute constant.

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Lower bounds

- Bourgain, Meyer, V. Milman and Pajor (80's) obtained the lower bound

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s}\left(\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)\right)^{\frac{1}{s n}} / \operatorname{vol}_{n}(K)^{1 / n}
$$

where $c>0$ is an absolute constant.

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Gluskin-Milman

Let A_{1}, \ldots, A_{s} be measurable sets in \mathbb{R}^{n} and K be a star body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Then, for all $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,
$\|\mathbf{t}\|_{\mathcal{A}, K}:=\frac{1}{\prod_{j=1}^{s} \operatorname{vol}_{n}\left(A_{j}\right)} \int_{A_{1}} \cdots \int_{A_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \geqslant c\left(\sum_{j=1}^{s} t_{j}^{2}\left(\frac{\operatorname{vol}_{n}\left(A_{j}\right)}{\operatorname{vol}_{n}(K)}\right)^{2 / n}\right)^{1 / 2}$,
where $c>0$ is an absolute constant.

Lower bounds

- Bourgain, Meyer, V. Milman and Pajor (80's) obtained the lower bound

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s}\left(\prod_{j=1}^{s} \operatorname{vol}_{n}\left(C_{j}\right)\right)^{\frac{1}{s n}} / \operatorname{vol}_{n}(K)^{1 / n}
$$

where $c>0$ is an absolute constant.

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Gluskin-Milman

Let A_{1}, \ldots, A_{s} be measurable sets in \mathbb{R}^{n} and K be a star body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Then, for all $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,
$\|\mathbf{t}\|_{\mathcal{A}, K}:=\frac{1}{\prod_{j=1}^{s} \operatorname{vol}_{n}\left(A_{j}\right)} \int_{A_{1}} \cdots \int_{A_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \geqslant c\left(\sum_{j=1}^{s} t_{j}^{2}\left(\frac{\operatorname{vol}_{n}\left(A_{j}\right)}{\operatorname{vol}_{n}(K)}\right)^{2 / n}\right)^{1 / 2}$,
where $c>0$ is an absolute constant. Equivalently, if $\operatorname{vol}_{n}\left(A_{j}\right)=\operatorname{vol}_{n}(K)$ for all $1 \leqslant j \leqslant s$ then

$$
\|\mathbf{t}\|_{\mathcal{A}, K} \geqslant c\|\mathbf{t}\|_{2}
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$.

Lower bounds

- Gluskin and V. Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.

Lower bounds

- Gluskin and V. Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.
- One may assume that $\operatorname{vol}_{n}\left(A_{i}\right)=\operatorname{vol}_{n}(K)=\operatorname{vol}_{n}\left(B_{2}^{n}\right)$ for all $1 \leqslant i \leqslant s$.

Lower bounds

- Gluskin and V. Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.
- One may assume that $\operatorname{vol}_{n}\left(A_{i}\right)=\operatorname{vol}_{n}(K)=\operatorname{vol}_{n}\left(B_{2}^{n}\right)$ for all $1 \leqslant i \leqslant s$.
- Using the BLL-inequality, write

$$
\begin{aligned}
& \int_{A_{1}} \cdots \int_{A_{s}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1}=\int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{A_{i}}\left(x_{i}\right) d x_{s} \cdots d x_{1} \\
& \leqslant \int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{B_{2}^{n}}\left(x_{i}\right) d x_{s} \cdots d x_{1}=\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1} .
\end{aligned}
$$

Lower bounds

- Gluskin and V . Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.
- One may assume that $\operatorname{vol}_{n}\left(A_{i}\right)=\operatorname{vol}_{n}(K)=\operatorname{vol}_{n}\left(B_{2}^{n}\right)$ for all $1 \leqslant i \leqslant s$.
- Using the BLL-inequality, write

$$
\begin{aligned}
& \int_{A_{1}} \cdots \int_{A_{s}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1}=\int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{A_{i}}\left(x_{i}\right) d x_{s} \cdots d x_{1} \\
& \leqslant \int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{B_{2}^{n}}\left(x_{i}\right) d x_{s} \cdots d x_{1}=\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1} .
\end{aligned}
$$

- Next, use the observation that

$$
\|y\|_{K}=\int_{0}^{\infty}\left(1-\mathbf{1}_{K}(y / r)\right) d r
$$

Lower bounds

- Gluskin and V . Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.
- One may assume that $\operatorname{vol}_{n}\left(A_{i}\right)=\operatorname{vol}_{n}(K)=\operatorname{vol}_{n}\left(B_{2}^{n}\right)$ for all $1 \leqslant i \leqslant s$.
- Using the BLL-inequality, write

$$
\begin{aligned}
& \int_{A_{1}} \cdots \int_{A_{s}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1}=\int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{K}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{A_{i}}\left(x_{i}\right) d x_{s} \cdots d x_{1} \\
& \leqslant \int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) \prod_{i=1}^{s} \mathbf{1}_{B_{2}^{n}}\left(x_{i}\right) d x_{s} \cdots d x_{1}=\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}} \mathbf{1}_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i} x_{i}\right) d x_{s} \cdots d x_{1} .
\end{aligned}
$$

- Next, use the observation that

$$
\|y\|_{K}=\int_{0}^{\infty}\left(1-\mathbf{1}_{K}(y / r)\right) d r
$$

- It follows that

$$
\begin{aligned}
\|t\|_{A_{i}, K} & =\int_{A_{1}} \cdots \int_{A_{s}}\left\|\sum_{i=1}^{s} t_{i} x_{i}\right\|_{K} \frac{d x_{s} \cdots d x_{1}}{\prod \operatorname{vol}_{n}\left(A_{i}\right)} \\
& \geqslant \int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}}\left\|\sum_{i=1}^{s} t_{i} x_{i}\right\|_{B_{2}^{n}} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}} .
\end{aligned}
$$

Lower bounds

- To give a lower bound for this quantity, write

$$
\begin{aligned}
\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}}\left\|\sum_{i=1}^{s} t_{i} x_{i}\right\|_{B_{2}^{n}} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}} & =\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}} \operatorname{Ave}_{\varepsilon_{i}= \pm 1}\left\|\sum_{i=1}^{s} \varepsilon_{i} t_{i} x_{i}\right\|_{B_{2}^{n}} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}} \\
& \geqslant \frac{1}{\sqrt{2}} \int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i}^{2}\left|x_{i}\right|^{2}\right)^{1 / 2} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}}
\end{aligned}
$$

using the unconditionality of B_{2}^{n} and Khinthcine inequality.

Lower bounds

- To give a lower bound for this quantity, write

$$
\begin{aligned}
\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}}\left\|\sum_{i=1}^{s} t_{i} x_{i}\right\|_{B_{2}^{n}} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}} & =\int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}} \operatorname{Ave}_{\varepsilon_{i}= \pm 1}\left\|\sum_{i=1}^{s} \varepsilon_{i} t_{i} x_{i}\right\|_{B_{2}^{n}} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}} \\
& \geqslant \frac{1}{\sqrt{2}} \int_{B_{2}^{n}} \cdots \int_{B_{2}^{n}}\left(\sum_{i=1}^{s} t_{i}^{2}\left|x_{i}\right|^{2}\right)^{1 / 2} \frac{d x_{s} \cdots d x_{1}}{\operatorname{vol}_{n}\left(B_{2}^{n}\right)^{s}}
\end{aligned}
$$

using the unconditionality of B_{2}^{n} and Khinthcine inequality.

- To finish the proof one may use the inequality

$$
\|f\|_{2} \leqslant\|f\|_{1}^{1 / 3}\|f\|_{4}^{2 / 3}
$$

for the function $f(x)=\left(\sum_{i=1}^{s} t_{i}^{2}\left|x_{i}\right|^{2}\right)^{1 / 2}$ defined on $\mathbb{R}^{n s}$ to estimate the last integral and get the result with

$$
c=\frac{1}{\sqrt{2}}\left(\frac{n}{n+2}\right)^{3 / 2} \sqrt{\frac{n+4}{n}} \rightarrow \frac{1}{\sqrt{2}} \quad \text { as } n \rightarrow \infty
$$

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\operatorname{vol}_{n}\left(C_{j}\right)=\operatorname{vol}_{n}(K)=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2} .
$$

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\operatorname{vol}_{n}\left(C_{j}\right)=\operatorname{vol}_{n}(K)=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2}
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\operatorname{vol}_{n}\left(C_{j}\right)=\operatorname{vol}_{n}(K)=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2}
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

An identity

Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C_{1}, \ldots, C_{s} respectively. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. Then,

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x) .
$$

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\operatorname{vol}_{n}\left(C_{j}\right)=\operatorname{vol}_{n}(K)=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2}
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

An identity

Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C_{1}, \ldots, C_{s} respectively. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. Then,

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x) .
$$

- Note that ν_{t} is an even log-concave probability measure on \mathbb{R}^{n} We write g_{t} for the density of $\nu_{\mathbf{t}}$.

Lower bounds: alternative proof

```
Lemma 1
If |t||}\mp@subsup{|}{2}{=1
```


Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{t}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy functional of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$, provided the integral exists.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy functional of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$, provided the integral exists.
- Bobkov and Madiman have shown that if g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right)
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy functional of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$, provided the integral exists.
- Bobkov and Madiman have shown that if g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right)
$$

- Let $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ and $t_{1}, \ldots, t_{s} \geqslant 0$. Then, if X_{1}, \ldots, X_{s} are independent random vectors with densities g_{1}, \ldots, g_{s}, by an equivalent form of the Shannon-Stam inequality, we have that $h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \geqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right)$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy functional of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$, provided the integral exists.
- Bobkov and Madiman have shown that if g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right)
$$

- Let $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ and $t_{1}, \ldots, t_{s} \geqslant 0$. Then, if X_{1}, \ldots, X_{s} are independent random vectors with densities g_{1}, \ldots, g_{s}, by an equivalent form of the Shannon-Stam inequality, we have that $h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \geqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right)$.
- Since the density g_{t} of $t_{1} X_{1}+\cdots+t_{s} X_{s}$ is also log-concave, we may write

$$
\sum_{j=1}^{s} t_{j}^{2} \log \left(\left\|g_{j}\right\|_{\infty}^{-1}\right) \leqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right) \leqslant h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \leqslant n+\log \left(\left\|g_{\mathrm{t}}\right\|_{\infty}^{-1}\right)
$$

which implies that $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n} \prod_{j=1}^{s}\left\|g_{j}\right\|_{\infty}^{t_{j}^{2}}$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy functional of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$, provided the integral exists.
- Bobkov and Madiman have shown that if g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right)
$$

- Let $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ and $t_{1}, \ldots, t_{s} \geqslant 0$. Then, if X_{1}, \ldots, X_{s} are independent random vectors with densities g_{1}, \ldots, g_{s}, by an equivalent form of the Shannon-Stam inequality, we have that $h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \geqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right)$.
- Since the density g_{t} of $t_{1} X_{1}+\cdots+t_{s} X_{s}$ is also log-concave, we may write

$$
\sum_{j=1}^{s} t_{j}^{2} \log \left(\left\|g_{j}\right\|_{\infty}^{-1}\right) \leqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right) \leqslant h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \leqslant n+\log \left(\left\|g_{\mathrm{t}}\right\|_{\infty}^{-1}\right)
$$

which implies that $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n} \prod_{j=1}^{s}\left\|g_{j}\right\|_{\infty}^{t_{j}^{2}}$.

- In our case, $g_{j}=\mathbf{1}_{c_{j}}$, therefore $\left\|g_{j}\right\|_{\infty}=1$ and the lemma follows.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{t}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density of a probability measure μ on \mathbb{R}^{n}. For any symmetric convex body K in \mathbb{R}^{n} and any $p>0$ one has

$$
\left(\frac{n}{n+p}\right)^{1 / p} \leqslant\left(\int_{\mathbb{R}^{n}}\|x\|_{K}^{p} f(x) d x\right)^{1 / p}\|f\|_{\infty}^{1 / n} \operatorname{vol}_{n}(K)^{1 / n}
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density of a probability measure μ on \mathbb{R}^{n}. For any symmetric convex body K in \mathbb{R}^{n} and any $p>0$ one has

$$
\left(\frac{n}{n+p}\right)^{1 / p} \leqslant\left(\int_{\mathbb{R}^{n}}\|x\|_{K}^{p} f(x) d x\right)^{1 / p}\|f\|_{\infty}^{1 / n} \operatorname{vol}_{n}(K)^{1 / n}
$$

- We apply Lemma 2 for the log-concave probability measure $\nu_{\mathbf{t}}$. For any $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ we have $\left\|g_{\mathbf{t}}\right\|_{\infty}=g_{\mathbf{t}}(0) \leqslant e^{n}$, therefore

$$
\frac{n}{n+1} \leqslant e \operatorname{vol}_{n}(K)^{1 / n} \int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=e \operatorname{vol}_{n}(K)^{1 / n}\|\mathbf{t}\|_{\mathcal{C}, K}
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density of a probability measure μ on \mathbb{R}^{n}. For any symmetric convex body K in \mathbb{R}^{n} and any $p>0$ one has

$$
\left(\frac{n}{n+p}\right)^{1 / p} \leqslant\left(\int_{\mathbb{R}^{n}}\|x\|_{K}^{p} f(x) d x\right)^{1 / p}\|f\|_{\infty}^{1 / n} \operatorname{vol}_{n}(K)^{1 / n}
$$

- We apply Lemma 2 for the log-concave probability measure $\nu_{\mathbf{t}}$. For any $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ we have $\left\|g_{\mathbf{t}}\right\|_{\infty}=g_{\mathbf{t}}(0) \leqslant e^{n}$, therefore

$$
\frac{n}{n+1} \leqslant e \operatorname{vol}_{n}(K)^{1 / n} \int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=e \operatorname{vol}_{n}(K)^{1 / n}\|\mathbf{t}\|_{\mathcal{C}, K}
$$

- This shows that if $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ is an s-tuple of symmetric convex bodies of volume 1 and K is a symmetric convex body in \mathbb{R}^{n} then, for any $s \geqslant 1$ and any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)} \operatorname{vol}_{n}(K)^{-1 / n}\|\mathbf{t}\|_{2}
$$

Isotropic convex bodies

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}
$$

for all $\xi \in S^{n-1}$.

Isotropic convex bodies

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}
$$

for all $\xi \in S^{n-1}$.

- We shall use the fact that if C is isotropic then $R(C) \leqslant c n L_{C}$ for some absolute constant $c>0$.

Isotropic convex bodies

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}
$$

for all $\xi \in S^{n-1}$.

- We shall use the fact that if C is isotropic then $R(C) \leqslant c n L_{C}$ for some absolute constant $c>0$.
- The hyperplane conjecture asks if there exists an absolute constant $A>0$ such that

$$
L_{n}:=\max \left\{L_{C}: C \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant A
$$

for all $n \geqslant 1$.

Isotropic convex bodies

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}
$$

for all $\xi \in S^{n-1}$.

- We shall use the fact that if C is isotropic then $R(C) \leqslant c n L_{C}$ for some absolute constant $c>0$.
- The hyperplane conjecture asks if there exists an absolute constant $A>0$ such that

$$
L_{n}:=\max \left\{L_{C}: C \text { is isotropic in } \mathbb{R}^{n}\right\} \leqslant A
$$

for all $n \geqslant 1$.

- Bourgain proved that $L_{n} \leqslant c \sqrt[4]{n} \log n$; later, Klartag improved this bound to $L_{n} \leqslant c \sqrt[4]{n}$.

Log-concave measures

- A Borel measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$.

Log-concave measures

- A Borel measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$.
- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called log-concave if its support $\{f>0\}$ is a convex set and the restriction of $\log f$ to it is concave. If a probability measure μ is log-concave and $\mu(H)<1$ for every hyperplane H, then μ has a log-concave density f_{μ}.

Log-concave measures

- A Borel measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$.
- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called log-concave if its support $\{f>0\}$ is a convex set and the restriction of $\log f$ to it is concave. If a probability measure μ is log-concave and $\mu(H)<1$ for every hyperplane H, then μ has a log-concave density f_{μ}.
- If C is a convex body in \mathbb{R}^{n} then the Brunn-Minkowski inequality implies that $\mathbf{1}_{C}$ is the density of a log-concave measure.

Log-concave measures

- A Borel measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$.
- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called log-concave if its support $\{f>0\}$ is a convex set and the restriction of $\log f$ to it is concave. If a probability measure μ is log-concave and $\mu(H)<1$ for every hyperplane H, then μ has a log-concave density f_{μ}.
- If C is a convex body in \mathbb{R}^{n} then the Brunn-Minkowski inequality implies that $\mathbf{1}_{C}$ is the density of a log-concave measure.
- If μ is a log-concave measure on \mathbb{R}^{n} with density f_{μ}, we define the isotropic constant of μ by

$$
L_{\mu}:=\left(\frac{\sup _{x \in \mathbb{R}^{n}} f_{\mu}(x)}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}\right)^{\frac{1}{n}}[\operatorname{det} \operatorname{Cov}(\mu)]^{\frac{1}{2 n}}
$$

where $\operatorname{Cov}(\mu)$ is the covariance matrix of μ with entries

$$
\operatorname{Cov}(\mu)_{i j}:=\frac{\int_{\mathbb{R}^{n}} x_{i} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}-\frac{\int_{\mathbb{R}^{n}} x_{i} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} \frac{\int_{\mathbb{R}^{n}} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} .
$$

Log-concave measures

- A Borel measure μ on \mathbb{R}^{n} is called log-concave if $\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{1-\lambda}$ for any compact subsets A and B of \mathbb{R}^{n} and any $\lambda \in(0,1)$.
- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called log-concave if its support $\{f>0\}$ is a convex set and the restriction of $\log f$ to it is concave. If a probability measure μ is log-concave and $\mu(H)<1$ for every hyperplane H, then μ has a log-concave density f_{μ}.
- If C is a convex body in \mathbb{R}^{n} then the Brunn-Minkowski inequality implies that $\mathbf{1}_{C}$ is the density of a log-concave measure.
- If μ is a log-concave measure on \mathbb{R}^{n} with density f_{μ}, we define the isotropic constant of μ by

$$
L_{\mu}:=\left(\frac{\sup _{x \in \mathbb{R}^{n}} f_{\mu}(x)}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}\right)^{\frac{1}{n}}[\operatorname{det} \operatorname{Cov}(\mu)]^{\frac{1}{2 n}}
$$

where $\operatorname{Cov}(\mu)$ is the covariance matrix of μ with entries

$$
\operatorname{Cov}(\mu)_{i j}:=\frac{\int_{\mathbb{R}^{n}} x_{i} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x}-\frac{\int_{\mathbb{R}^{n}} x_{i} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} \frac{\int_{\mathbb{R}^{n}} x_{j} f_{\mu}(x) d x}{\int_{\mathbb{R}^{n}} f_{\mu}(x) d x} .
$$

- We say that a log-concave probability measure μ on \mathbb{R}^{n} is isotropic if it is centered, i.e. if

$$
\int_{\mathbb{R}^{n}}\langle x, \xi\rangle d \mu(x)=\int_{\mathbb{R}^{n}}\langle x, \xi\rangle f_{\mu}(x) d x=0
$$

for all $\xi \in S^{n-1}$, and $\operatorname{Cov}(\mu)$ is the identity matrix.

Log-concave measures

- If C is a centered convex body of volume 1 in \mathbb{R}^{n} then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α}-direction (where $1 \leqslant \alpha \leqslant 2$) for C with constant $\varrho>0$ if

$$
\|\langle\cdot, \xi\rangle\|_{L_{\psi_{\alpha}}(C)} \leqslant \varrho\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}
$$

where

$$
\|\langle\cdot, \xi\rangle\|_{L_{\psi_{\alpha}}(C)}:=\inf \left\{t>0: \int_{C} \exp \left((|\langle x, \xi\rangle| / t)^{\alpha}\right) d x \leqslant 2\right\}
$$

- Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^{n}.

Log-concave measures

- If C is a centered convex body of volume 1 in \mathbb{R}^{n} then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α}-direction (where $1 \leqslant \alpha \leqslant 2$) for C with constant $\varrho>0$ if

$$
\|\langle\cdot, \xi\rangle\|_{L_{\psi_{\alpha}}(C)} \leqslant \varrho\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}
$$

where

$$
\|\langle\cdot, \xi\rangle\|_{L_{\psi_{\alpha}}(C)}:=\inf \left\{t>0: \int_{C} \exp \left((|\langle x, \xi\rangle| / t)^{\alpha}\right) d x \leqslant 2\right\}
$$

- Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^{n}.
- From log-concavity it follows that every $\xi \in S^{n-1}$ is a ψ_{1}-direction for any C or μ with an absolute constant ϱ : there exists $\varrho>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{\psi_{1}}(\mu)} \leqslant \varrho\|\langle\cdot, \xi\rangle\|_{L_{2}(\mu)}
$$

for all $n \geqslant 1$, all centered log-concave probability measures μ on \mathbb{R}^{n} and all $\xi \in S^{n-1}$.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n} .
$$

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n}
$$

- It follows that if g_{t} is the density of ν_{t} then $f_{\mathrm{t}}(x)=L_{c}^{n} g_{\mathrm{t}}\left(L_{c} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}. Indeed, we have

$$
\int_{\mathbb{R}^{n}} f_{\mathbf{t}}(x) x_{i} x_{j} d x=L_{C}^{n} \int_{\mathbb{R}^{n}} g_{\mathbf{t}}\left(L_{C} x\right) x_{i} x_{j} d x=L_{C}^{-2} \int_{\mathbb{R}^{n}} g_{\mathbf{t}}(y) y_{i} y_{j} d y=\delta_{i j}
$$

for all $1 \leqslant i, j \leqslant n$.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n}
$$

- It follows that if g_{t} is the density of ν_{t} then $f_{\mathrm{t}}(x)=L_{C}^{n} g_{\mathrm{t}}\left(L_{C} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}. Indeed, we have

$$
\int_{\mathbb{R}^{n}} f_{\mathbf{t}}(x) x_{i} x_{j} d x=L_{C}^{n} \int_{\mathbb{R}^{n}} g_{\mathbf{t}}\left(L_{C} x\right) x_{i} x_{j} d x=L_{C}^{-2} \int_{\mathbb{R}^{n}} g_{\mathbf{t}}(y) y_{i} y_{j} d y=\delta_{i j}
$$

for all $1 \leqslant i, j \leqslant n$.

- From Lemma 1

$$
L_{\mu_{\mathbf{t}}}=\left\|f_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}}=L_{C}\left\|g_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}} \leqslant e L_{C}
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n}
$$

- It follows that if g_{t} is the density of ν_{t} then $f_{\mathrm{t}}(x)=L_{C}^{n} g_{\mathrm{t}}\left(L_{C} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}. Indeed, we have

$$
\int_{\mathbb{R}^{n}} f_{\mathbf{t}}(x) x_{i} x_{j} d x=L_{C}^{n} \int_{\mathbb{R}^{n}} g_{\mathfrak{t}}\left(L_{C} x\right) x_{i} x_{j} d x=L_{C}^{-2} \int_{\mathbb{R}^{n}} g_{\mathfrak{t}}(y) y_{i} y_{j} d y=\delta_{i j}
$$

for all $1 \leqslant i, j \leqslant n$.

- From Lemma 1

$$
L_{\mu_{\mathbf{t}}}=\left\|f_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}}=L_{C}\left\|g_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}} \leqslant e L_{C}
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

- We also have

$$
\|\mathbf{t}\|_{C^{s}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=L_{C}^{-n} \int_{\mathbb{R}^{n}}\|x\|_{K} f_{\mathbf{t}}\left(x / L_{C}\right) d x=L_{C} \int_{\mathbb{R}^{n}}\|y\|_{K} d \mu_{\mathbf{t}}(y)
$$

Upper bounds

- Since $\|\mathbf{t}\|_{c^{s}, K}=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.

Upper bounds

- Since $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and $I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)$.

Upper bounds

- Since $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} l_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and $I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)$.

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

where

$$
M(K):=\int_{S^{n-1}}\|\xi\|_{K} d \sigma(\xi)
$$

and ν, σ denote the Haar probability measures on $O(n)$ and S^{n-1} respectively.

Upper bounds

- Since $\|\mathbf{t}\| c^{s}, K=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} l_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and $I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)$.

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

where

$$
M(K):=\int_{S^{n-1}}\|\xi\|_{K} d \sigma(\xi)
$$

and ν, σ denote the Haar probability measures on $O(n)$ and S^{n-1} respectively.

- It follows that $\int_{O(n)}\|\mathbf{t}\|_{U(C)^{s}, K} \approx\left(L_{C} \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}$.

Upper bounds

- Since $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} l_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and $I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)$.

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

where

$$
M(K):=\int_{S^{n-1}}\|\xi\|_{K} d \sigma(\xi)
$$

and ν, σ denote the Haar probability measures on $O(n)$ and S^{n-1} respectively.

- It follows that $\int_{O(n)}\|\mathbf{t}\|_{U(C)^{s}, K} \approx\left(L_{C} \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}$.
- Therefore, our goal is to obtain a constant of the order of $L_{C} \sqrt{n} M(K)$ in our upper estimate for $\|\mathbf{t}\|_{c^{s}, K}$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.
- However, the currently best known estimate is

$$
M\left(K_{\text {iso }}\right) \leqslant \frac{c(\log n)^{2 / 5}}{\sqrt[10]{n} L_{k}}
$$

proved in [G. - E. Milman].

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.
- However, the currently best known estimate is

$$
M\left(K_{\text {iso }}\right) \leqslant \frac{c(\log n)^{2 / 5}}{\sqrt[10]{n} L_{\kappa}}
$$

proved in [G. - E. Milman].

- There, it is also shown that in the case where K is a ψ_{2}-body with constant ϱ one has

$$
M\left(K_{\mathrm{iso}}\right) \leqslant \frac{c \sqrt[3]{\varrho}(\log n)^{1 / 3}}{\sqrt[6]{n} L_{K}}
$$

A simple upper bound

A simple upper bound

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. If $R\left(K^{\circ}\right)$ is the radius of K° then, for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant \sqrt{n} L_{c} R\left(K^{\circ}\right)\|\mathbf{t}\|_{2} .
$$

A simple upper bound

A simple upper bound

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. If $R\left(K^{\circ}\right)$ is the radius of K° then, for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant \sqrt{n} L_{C} R\left(K^{\circ}\right)\|\mathbf{t}\|_{2}
$$

For the proof we use the identity $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)$ and the simple inequality $\|y\|_{K} \leqslant b\|y\|_{2}$, where $b=b(K)=R\left(K^{\circ}\right)$. Note that

$$
I_{1}\left(\mu_{\mathbf{t}}, K\right) \leqslant b \int_{\mathbb{R}^{n}}\|y\|_{2} d \mu_{\mathbf{t}}(y) \leqslant b \sqrt{n} .
$$

A simple upper bound

A simple upper bound

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. If $R\left(K^{\circ}\right)$ is the radius of K° then, for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant \sqrt{n} L_{C} R\left(K^{\circ}\right)\|\mathbf{t}\|_{2}
$$

For the proof we use the identity $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)$ and the simple inequality $\|y\|_{K} \leqslant b\|y\|_{2}$, where $b=b(K)=R\left(K^{\circ}\right)$. Note that

$$
I_{1}\left(\mu_{\mathbf{t}}, K\right) \leqslant b \int_{\mathbb{R}^{n}}\|y\|_{2} d \mu_{\mathbf{t}}(y) \leqslant b \sqrt{n} .
$$

An application: If K is a symmetric convex body in \mathbb{R}^{n} then the modulus of convexity of K is the function $\delta_{K}:(0,2] \rightarrow \mathbb{R}$ defined by

$$
\delta_{K}(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|_{K}:\|x\|_{K},\|y\|_{K} \leqslant 1,\|x-y\|_{K} \geqslant \varepsilon\right\} .
$$

A simple upper bound

A simple upper bound

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. If $R\left(K^{\circ}\right)$ is the radius of K° then, for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant \sqrt{n} L_{C} R\left(K^{\circ}\right)\|\mathbf{t}\|_{2}
$$

For the proof we use the identity $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)$ and the simple inequality $\|y\|_{K} \leqslant b\|y\|_{2}$, where $b=b(K)=R\left(K^{\circ}\right)$. Note that

$$
I_{1}\left(\mu_{\mathbf{t}}, K\right) \leqslant b \int_{\mathbb{R}^{n}}\|y\|_{2} d \mu_{\mathbf{t}}(y) \leqslant b \sqrt{n} .
$$

An application: If K is a symmetric convex body in \mathbb{R}^{n} then the modulus of convexity of K is the function $\delta_{K}:(0,2] \rightarrow \mathbb{R}$ defined by

$$
\delta_{K}(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|_{K}:\|x\|_{K},\|y\|_{K} \leqslant 1,\|x-y\|_{K} \geqslant \varepsilon\right\} .
$$

- Then, K is called 2-convex with constant α if, for every $\varepsilon \in(0,2$],

$$
\delta_{K}(\varepsilon) \geqslant \alpha \varepsilon^{2} .
$$

A simple upper bound

A simple upper bound

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. If $R\left(K^{\circ}\right)$ is the radius of K° then, for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant \sqrt{n} L_{C} R\left(K^{\circ}\right)\|\mathbf{t}\|_{2}
$$

For the proof we use the identity $\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)$ and the simple inequality $\|y\|_{K} \leqslant b\|y\|_{2}$, where $b=b(K)=R\left(K^{\circ}\right)$. Note that

$$
I_{1}\left(\mu_{\mathbf{t}}, K\right) \leqslant b \int_{\mathbb{R}^{n}}\|y\|_{2} d \mu_{\mathbf{t}}(y) \leqslant b \sqrt{n} .
$$

An application: If K is a symmetric convex body in \mathbb{R}^{n} then the modulus of convexity of K is the function $\delta_{K}:(0,2] \rightarrow \mathbb{R}$ defined by

$$
\delta_{K}(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|_{K}:\|x\|_{K},\|y\|_{K} \leqslant 1,\|x-y\|_{K} \geqslant \varepsilon\right\} .
$$

- Then, K is called 2-convex with constant α if, for every $\varepsilon \in(0,2$,

$$
\delta_{K}(\varepsilon) \geqslant \alpha \varepsilon^{2} .
$$

- Examples of 2 -convex bodies are given by the unit balls of subspaces of L_{p}-spaces, $1<p \leqslant 2$; one can check that the definition is satisfied with $\alpha \approx p-1$.

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2 -convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{c}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant.

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2-convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{C}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant. In particular, for any symmetric convex body K in \mathbb{R}^{n} which is 2-convex with constant α, we have that

$$
\|\mathbf{t}\|_{K^{s}, K} \leqslant \frac{c}{\alpha}\|\mathbf{t}\|_{2}
$$

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2-convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{c}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant. In particular, for any symmetric convex body K in \mathbb{R}^{n} which is 2-convex with constant α, we have that

$$
\|\mathbf{t}\|_{K^{s}, K} \leqslant \frac{c}{\alpha}\|\mathbf{t}\|_{2}
$$

- Klartag and E. Milman have proved that if K is a symmetric convex body of volume 1 in \mathbb{R}^{n}, which is also 2-convex with constant α, then $L_{K} \leqslant c_{1} / \sqrt{\alpha}$.

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2-convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{c}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant. In particular, for any symmetric convex body K in \mathbb{R}^{n} which is 2-convex with constant α, we have that

$$
\|\mathbf{t}\|_{K^{s}, K} \leqslant \frac{c}{\alpha}\|\mathbf{t}\|_{2} .
$$

- Klartag and E. Milman have proved that if K is a symmetric convex body of volume 1 in \mathbb{R}^{n}, which is also 2 -convex with constant α, then $L_{K} \leqslant c_{1} / \sqrt{\alpha}$.
- Moreover, if K is isotropic then $c_{2} \sqrt{\alpha} \sqrt{n} B_{2}^{n} \subseteq K$.

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2-convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{c}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant. In particular, for any symmetric convex body K in \mathbb{R}^{n} which is 2-convex with constant α, we have that

$$
\|\mathbf{t}\|_{K^{s}, K} \leqslant \frac{c}{\alpha}\|\mathbf{t}\|_{2} .
$$

- Klartag and E. Milman have proved that if K is a symmetric convex body of volume 1 in \mathbb{R}^{n}, which is also 2 -convex with constant α, then $L_{K} \leqslant c_{1} / \sqrt{\alpha}$.
- Moreover, if K is isotropic then $c_{2} \sqrt{\alpha} \sqrt{n} B_{2}^{n} \subseteq K$.

Proof: The first claim follows from the fact that $R\left(K^{\circ}\right) \leqslant c_{2}^{-1} /(\sqrt{\alpha} \sqrt{n})$.

2-convex bodies

2-convex bodies

Let C be an isotropic convex body in \mathbb{R}^{n} and K be an isotropic symmetric convex body in \mathbb{R}^{n} which is also 2-convex with constant α. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant \frac{c L_{c}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant. In particular, for any symmetric convex body K in \mathbb{R}^{n} which is 2-convex with constant α, we have that

$$
\|\mathbf{t}\|_{K^{s}, K} \leqslant \frac{c}{\alpha}\|\mathbf{t}\|_{2} .
$$

- Klartag and E. Milman have proved that if K is a symmetric convex body of volume 1 in \mathbb{R}^{n}, which is also 2-convex with constant α, then $L_{K} \leqslant c_{1} / \sqrt{\alpha}$.
- Moreover, if K is isotropic then $c_{2} \sqrt{\alpha} \sqrt{n} B_{2}^{n} \subseteq K$.

Proof: The first claim follows from the fact that $R\left(K^{\circ}\right) \leqslant c_{2}^{-1} /(\sqrt{\alpha} \sqrt{n})$.
For the second assertion we may assume that K is isotropic. Since $L_{K} \leqslant c_{1} / \sqrt{\alpha}$ we see that

$$
\mathbb{E}_{K^{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} \leqslant \frac{c_{2}^{-1} L_{K}}{\sqrt{\alpha}}\|\mathbf{t}\|_{2} \leqslant \frac{c_{3}}{\alpha}\|\mathbf{t}\|_{2}
$$

A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c\left(L_{c} \max \{\sqrt[4]{n}, \sqrt{\log (1+s)}\}\right) \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$, where $c>0$ is an absolute constant.

- Assume that $\|\mathbf{t}\|_{2}=1$.

A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c\left(L_{C} \max \{\sqrt[4]{n}, \sqrt{\log (1+s)}\}\right) \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$, where $c>0$ is an absolute constant.

- Assume that $\|\mathbf{t}\|_{2}=1$. Our starting point will be again

$$
\|\mathbf{t}\|_{C^{s}, K}=L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

so we try to give an upper bound for $I_{1}\left(\mu_{\mathrm{t}}, K\right)$.

A general upper bound

We shall use a number of facts.

A general upper bound

We shall use a number of facts.

Paouris

If μ is an isotropic log-concave probability measure on \mathbb{R}^{n}, then

$$
\mu\left(\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \geqslant c_{1} r \sqrt{n}\right\}\right) \leqslant e^{-r \sqrt{n}}
$$

for every $r \geqslant 1$, where $c_{1}>0$ is an absolute constant.

A general upper bound

We shall use a number of facts.

Paouris

If μ is an isotropic log-concave probability measure on \mathbb{R}^{n}, then

$$
\mu\left(\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \geqslant c_{1} r \sqrt{n}\right\}\right) \leqslant e^{-r \sqrt{n}}
$$

for every $r \geqslant 1$, where $c_{1}>0$ is an absolute constant.

Support

Since $R(C) \leqslant c_{2} n L_{C}$ and $\operatorname{supp}\left(\nu_{\mathbf{t}}\right) \subseteq s C$, we have that

$$
\operatorname{supp}\left(\mu_{\mathrm{t}}\right) \subseteq \frac{s}{L_{C}} C \subseteq\left(c_{2} n s\right) B_{2}^{n}
$$

for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

A general upper bound

- We fix $r \geqslant 1$ and set $C_{t}(r)=\operatorname{supp}\left(\mu_{\mathrm{t}}\right) \cap c_{1} r \sqrt{n} B_{2}^{n}$. We may write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+\int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K) \int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash C_{\mathbf{t}}(r)}\|x\|_{2} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K)\left(c_{2} n s\right) e^{-r \sqrt{n}}
\end{aligned}
$$

A general upper bound

- We fix $r \geqslant 1$ and set $C_{\mathrm{t}}(r)=\operatorname{supp}\left(\mu_{\mathrm{t}}\right) \cap c_{1} r \sqrt{n} B_{2}^{n}$. We may write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+\int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash c_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{\mathcal{C}_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K) \int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash C_{\mathbf{t}}(r)}\|x\|_{2} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K)\left(c_{2} n s\right) e^{-r \sqrt{n}}
\end{aligned}
$$

- For the first term, we consider the log-concave probability measure $\mu_{\mathbf{t}, r}$ with density

$$
\frac{1}{\mu_{\mathbf{t}}\left(C_{\mathbf{t}}(r)\right)} \mathbf{1}_{C_{\mathbf{t}}(r)} f_{\mathbf{t}}
$$

and the stochastic process $\left(w_{y}\right)_{y \in K^{\circ}}$ on $\left(\mathbb{R}^{n}, \mu_{\mathbf{t}, r}\right)$, where $w_{y}(x)=\langle x, y\rangle$.

A general upper bound

- We fix $r \geqslant 1$ and set $C_{\mathrm{t}}(r)=\operatorname{supp}\left(\mu_{\mathrm{t}}\right) \cap c_{1} r \sqrt{n} B_{2}^{n}$. We may write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+\int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash c_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{\mathcal{C}_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K) \int_{\operatorname{supp}\left(\mu_{\mathbf{t}}\right) \backslash C_{\mathbf{t}}(r)}\|x\|_{2} d \mu_{\mathbf{t}}(x) \\
& \leqslant \int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x)+b(K)\left(c_{2} n s\right) e^{-r \sqrt{n}}
\end{aligned}
$$

- For the first term, we consider the log-concave probability measure $\mu_{\mathbf{t}, r}$ with density

$$
\frac{1}{\mu_{\mathbf{t}}\left(C_{\mathbf{t}}(r)\right)} \mathbf{1}_{C_{\mathbf{t}}(r)} f_{\mathbf{t}}
$$

and the stochastic process $\left(w_{y}\right)_{y \in K^{\circ}}$ on $\left(\mathbb{R}^{n}, \mu_{\mathbf{t}, r}\right)$, where $w_{y}(x)=\langle x, y\rangle$.

- We consider a standard Gaussian random vector G in \mathbb{R}^{n}, and for $y \in K^{\circ}$ set $h_{y}(G)=\langle G, y\rangle$. Note that

$$
\mathbb{E}\left(\max _{y \in K^{\circ}} h_{y}(G)\right)=\mathbb{E}\|G\|_{K} \approx \sqrt{n} M(K)
$$

A general upper bound

To bound $\mathbb{E}\left(\max _{y \in K} \circ w_{y}\right)$, we will use Talagrand's comparison theorem.

Talagrand

If $\left(Y_{t}\right)_{t \in T}$ is a Gaussian process and $\left(X_{t}\right)_{t \in T}$ is a stochastic process such that

$$
\left\|X_{s}-X_{t}\right\|_{\psi_{2}} \leqslant \alpha\left\|Y_{s}-Y_{t}\right\|_{2}
$$

for some $\alpha>0$ and every $s, t \in T$, then

$$
\mathbb{E}\left(\max _{t \in T} X_{t}\right) \leqslant c \alpha \mathbb{E}\left(\max _{t \in T} Y_{t}\right)
$$

A general upper bound

To bound $\mathbb{E}\left(\max _{y \in K} \circ w_{y}\right)$, we will use Talagrand's comparison theorem.

Talagrand

If $\left(Y_{t}\right)_{t \in T}$ is a Gaussian process and $\left(X_{t}\right)_{t \in T}$ is a stochastic process such that

$$
\left\|X_{s}-X_{t}\right\|_{\psi_{2}} \leqslant \alpha\left\|Y_{s}-Y_{t}\right\|_{2}
$$

for some $\alpha>0$ and every $s, t \in T$, then

$$
\mathbb{E}\left(\max _{t \in T} X_{t}\right) \leqslant c \alpha \mathbb{E}\left(\max _{t \in T} Y_{t}\right)
$$

- It is easily checked that $\left\|h_{y}-h_{z}\right\|_{2}=\|y-z\|_{2}$ for all $y, z \in K^{\circ}$. To bound the ψ_{2} norm of $w_{y}-w_{z}$, we use the inequality $\|h\|_{\psi_{2}} \leqslant \sqrt{\|h\|_{\psi_{1}}\|h\|_{\infty}}$. Note that

$$
\left\|w_{y}-w_{z}\right\|_{L^{\infty}\left(\mu_{\mathbf{t}, r}\right)} \leqslant R\left(C_{\mathbf{t}}(r)\right)\|y-z\|_{2} \leqslant c_{1} r \sqrt{n}\|y-z\|_{2}
$$

and we also have

$$
\left\|w_{y}-w_{z}\right\|_{L^{\psi_{1}}\left(\mu_{\mathbf{t}, r}\right)} \leqslant c_{3}\left\|w_{y}-w_{z}\right\|_{L^{2}\left(\mu_{\mathbf{t}, r}\right)} \leqslant 2 c_{3}\|y-z\|_{2}
$$

for some absolute constant $c_{3}>0$ (here we also use the fact that $\left.\mu\left(C_{\mathrm{t}}(r)\right) \geqslant 1-e^{-r \sqrt{n}} \geqslant 1 / 2\right)$. It follows that

$$
\left\|w_{y}-w_{z}\right\|_{L \psi_{2}\left(\mu_{\mathbf{t}, r}\right)} \leqslant c_{4} \sqrt{r} \sqrt[4]{n}\left\|h_{y}-h_{z}\right\|_{2}
$$

A general upper bound

- Then,

$$
\begin{aligned}
\int_{\mathcal{C}_{\mathrm{t}}(r)}\|x\|_{K} d \mu_{\mathrm{t}}(x) & =\mu_{\mathrm{t}}\left(C_{\mathrm{t}}(r)\right) \mathbb{E}_{\mu_{\mathrm{t}, r}}\left(\max _{y \in K_{0}} w_{y}\right) \leqslant c_{5} \sqrt{r} \sqrt[4]{n} \mathbb{E}\left(\max _{y \in K_{o}} h_{y}\right) \\
& \approx \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K) .
\end{aligned}
$$

A general upper bound

- Then,

$$
\begin{aligned}
\int_{C_{\mathfrak{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\mu_{\mathbf{t}}\left(C_{\mathfrak{t}}(r)\right) \mathbb{E}_{\mu_{\mathrm{t}, r}}\left(\max _{y \in K^{\circ}} w_{y}\right) \leqslant c_{5} \sqrt{r} \sqrt[4]{n} \mathbb{E}\left(\max _{y \in K^{\circ}} h_{y}\right) \\
& \approx \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)
\end{aligned}
$$

- Finally,

$$
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathrm{t}}(x) \leqslant c_{1}^{\prime}\left(\sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)+b(K) n s e^{-r \sqrt{n}}\right)
$$

A general upper bound

- Then,

$$
\begin{aligned}
\int_{C_{\mathbf{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\mu_{\mathbf{t}}\left(C_{\mathbf{t}}(r)\right) \mathbb{E}_{\mu_{\mathbf{t}, r}}\left(\max _{y \in K^{\circ}} w_{y}\right) \leqslant c_{5} \sqrt{r} \sqrt[4]{n} \mathbb{E}\left(\max _{y \in K^{\circ}} h_{y}\right) \\
& \approx \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)
\end{aligned}
$$

- Finally,

$$
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathbf{t}}(x) \leqslant c_{1}^{\prime}\left(\sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)+b(K) n s e^{-r \sqrt{n}}\right)
$$

- Since $b(K) \leqslant c_{6} \sqrt{n} M(K)$ we have that

$$
b(K) n s e^{-r \sqrt{n}} \leqslant c_{6} n s e^{-r \sqrt{n}} \sqrt{n} M(K) \leqslant \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)
$$

if we choose

$$
r \approx \max \left\{1, \frac{\log (1+s)}{\sqrt{n}}\right\}
$$

A general upper bound

- Then,

$$
\begin{aligned}
\int_{C_{\mathfrak{t}}(r)}\|x\|_{K} d \mu_{\mathbf{t}}(x) & =\mu_{\mathbf{t}}\left(C_{\mathfrak{t}}(r)\right) \mathbb{E}_{\mu_{\mathrm{t}, r}}\left(\max _{y \in K^{\circ}} w_{y}\right) \leqslant c_{5} \sqrt{r} \sqrt[4]{n} \mathbb{E}\left(\max _{y \in K^{\circ}} h_{y}\right) \\
& \approx \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)
\end{aligned}
$$

- Finally,

$$
\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathrm{t}}(x) \leqslant c_{1}^{\prime}\left(\sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)+b(K) n s e^{-r \sqrt{n}}\right)
$$

- Since $b(K) \leqslant c_{6} \sqrt{n} M(K)$ we have that

$$
b(K) n s e^{-r \sqrt{n}} \leqslant c_{6} n s e^{-r \sqrt{n}} \sqrt{n} M(K) \leqslant \sqrt{r} \sqrt[4]{n} \sqrt{n} M(K)
$$

if we choose

$$
r \approx \max \left\{1, \frac{\log (1+s)}{\sqrt{n}}\right\}
$$

- Therefore,

$$
\|\mathbf{t}\|_{C^{s}, K}=L_{C} I_{1}\left(\mu_{\mathbf{t}}, K\right) \leqslant\left(c_{2}^{\prime} L_{C} \max \left\{1, \frac{\sqrt{\log (1+s)}}{\sqrt[4]{n}}\right\} \sqrt[4]{n}\right) \sqrt{n} M(K)
$$

as claimed.

- Adapting the proof of the previous theorem one can show that if C is assumed a ψ_{2}-body with constant ϱ, which means that every direction ξ is a ψ_{2}-direction for C with constant ϱ, then a much better estimate is available.

ψ_{2}-case

- Adapting the proof of the previous theorem one can show that if C is assumed a ψ_{2}-body with constant ϱ, which means that every direction ξ is a ψ_{2}-direction for C with constant ϱ, then a much better estimate is available.

ψ_{2}-case

Let C be an isotropic convex body in \mathbb{R}^{n}, which is a ψ_{2}-body with constant ϱ, and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c \varrho^{2} \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

where $c>0$ is an absolute constant.

Cotype-2 case

- Let K be a symmetric convex body in \mathbb{R}^{n}. Recall that if X_{K} is the normed space with unit ball K, we write $C_{2, k}\left(X_{K}\right)$ for the best constant $C>0$ such that

$$
\left(\mathbb{E}_{\epsilon}\left\|\sum_{i=1}^{k} \epsilon_{i} x_{i}\right\|_{K}^{2}\right)^{1 / 2} \geqslant \frac{1}{C}\left(\sum_{i=1}^{k}\left\|x_{i}\right\|_{K}^{2}\right)^{1 / 2}
$$

for all $x_{1}, \ldots, x_{k} \in X$. Then, the cotype-2 constant of X_{K} is defined as $C_{2}\left(X_{K}\right):=\sup _{k} C_{2, k}\left(X_{K}\right)$.

Cotype-2 case

- Let K be a symmetric convex body in \mathbb{R}^{n}. Recall that if X_{K} is the normed space with unit ball K, we write $C_{2, k}\left(X_{K}\right)$ for the best constant $C>0$ such that

$$
\left(\mathbb{E}_{\epsilon}\left\|\sum_{i=1}^{k} \epsilon_{i} x_{i}\right\|_{K}^{2}\right)^{1 / 2} \geqslant \frac{1}{C}\left(\sum_{i=1}^{k}\left\|x_{i}\right\|_{K}^{2}\right)^{1 / 2}
$$

for all $x_{1}, \ldots, x_{k} \in X$. Then, the cotype-2 constant of X_{K} is defined as $C_{2}\left(X_{K}\right):=\sup _{k} C_{2, k}\left(X_{K}\right)$.

- Replacing the ϵ_{j} 's by independent standard Gaussian random variables g_{j} in the definition above, one may define the Gaussian cotype- 2 constant $\alpha_{2}\left(X_{K}\right)$ of X_{K}. One can check that $\alpha_{2}\left(X_{K}\right) \leqslant C_{2}\left(X_{K}\right)$.

Cotype-2 case

E. Milman

If μ is a finite, compactly supported isotropic measure on \mathbb{R}^{n} then, for any symmetric convex body K in \mathbb{R}^{n},

$$
I_{1}(\mu, K) \leqslant c_{1} \alpha_{2}\left(X_{K}\right) \sqrt{n} M(K) \leqslant c_{1} C_{2}\left(X_{K}\right) \sqrt{n} M(K)
$$

Cotype-2 case

E. Milman

If μ is a finite, compactly supported isotropic measure on \mathbb{R}^{n} then, for any symmetric convex body K in \mathbb{R}^{n},

$$
I_{1}(\mu, K) \leqslant c_{1} \alpha_{2}\left(X_{K}\right) \sqrt{n} M(K) \leqslant c_{1} C_{2}\left(X_{K}\right) \sqrt{n} M(K) .
$$

Cotype-2 case

Let C be an isotropic symmetric convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\mathbb{E}_{C^{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} \leqslant\left(c_{1} L_{C} C_{2}\left(X_{K}\right) \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}
$$

where $c_{1}>0$ is an absolute constant.

Cotype-2 case

- For the proof we combine the identity

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{\kappa} d \nu_{\mathbf{t}}(x)=L_{c} I_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

with the bound $I_{1}\left(\mu_{\mathrm{t}}, K\right) \leqslant c_{1} C_{2}\left(X_{K}\right) \sqrt{n} M(K)$ to get

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant c_{1} L_{c} C_{2}\left(X_{K}\right) \sqrt{n} M(K)
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

Cotype-2 case

- For the proof we combine the identity

$$
\|\mathbf{t}\|_{c, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=L_{c} 1_{1}\left(\mu_{\mathbf{t}}, K\right)
$$

with the bound $I_{1}\left(\mu_{\mathrm{t}}, K\right) \leqslant c_{1} C_{2}\left(X_{K}\right) \sqrt{n} M(K)$ to get

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant c_{1} L_{c} C_{2}\left(X_{K}\right) \sqrt{n} M(K)
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

- In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have that

$$
\mathbb{E}_{K^{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} \leqslant\left(c_{2} L_{K} C_{2}\left(X_{K}\right) \sqrt{n} M\left(K_{\text {iso }}\right)\right)\|\mathbf{t}\|_{2},
$$

where $K_{\text {iso }}$ is an isotropic image of K.

Unconditional case

Unconditional case

There exists an absolute constant $c>0$ with the following property: if K and C_{1}, \ldots, C_{s} are isotropic unconditional convex bodies in \mathbb{R}^{n} then, for every $q \geqslant 1$,

$$
\left(\int_{C_{1}} \ldots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K}^{q} d x_{1} \ldots d x_{s}\right)^{1 / q} \leqslant c n^{1 / q} \sqrt{q} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{q}\|\mathbf{t}\|_{\infty}\right\} \leqslant c n^{1 / q} q\|\mathbf{t}\|_{2},
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$. In particular,

$$
\|\mathbf{t}\|_{c, K} \leqslant c \sqrt{\log n} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{\log n}\|\mathbf{t}\|_{\infty}\right\} \leqslant c \log n\|\mathbf{t}\|_{2}
$$

Unconditional case

Unconditional case

There exists an absolute constant $c>0$ with the following property: if K and C_{1}, \ldots, C_{s} are isotropic unconditional convex bodies in \mathbb{R}^{n} then, for every $q \geqslant 1$,

$$
\left(\int_{C_{1}} \ldots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K}^{q} d x_{1} \ldots d x_{s}\right)^{1 / q} \leqslant c n^{1 / q} \sqrt{q} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{q}\|\mathbf{t}\|_{\infty}\right\} \leqslant c n^{1 / q} q\|\mathbf{t}\|_{2},
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$. In particular,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \leqslant c \sqrt{\log n} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{\log n}\|\mathbf{t}\|_{\infty}\right\} \leqslant c \log n\|\mathbf{t}\|_{2}
$$

- This is essentially proved in [G.-Hartzoulaki-Tsolomitis].

Unconditional case

Unconditional case

There exists an absolute constant $c>0$ with the following property: if K and C_{1}, \ldots, C_{s} are isotropic unconditional convex bodies in \mathbb{R}^{n} then, for every $q \geqslant 1$,

$$
\left(\int_{C_{1}} \ldots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K}^{q} d x_{1} \ldots d x_{s}\right)^{1 / q} \leqslant c n^{1 / q} \sqrt{q} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{q}\|\mathbf{t}\|_{\infty}\right\} \leqslant c n^{1 / q} q\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$. In particular,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \leqslant c \sqrt{\log n} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{\log n}\|\mathbf{t}\|_{\infty}\right\} \leqslant c \log n\|\mathbf{t}\|_{2}
$$

- This is essentially proved in [G.-Hartzoulaki-Tsolomitis].
- The proof makes use of the comparison theorem of Bobkov and Nazarov.

ℓ_{p}^{n}-balls

- Let us first assume that $1 \leqslant p \leqslant 2$. Then, ℓ_{p}^{n} has cotype- 2 constant bounded by an absolute (independent from p and n) constant.

ℓ_{p}^{n}-balls

- Let us first assume that $1 \leqslant p \leqslant 2$. Then, ℓ_{p}^{n} has cotype- 2 constant bounded by an absolute (independent from p and n) constant.
- It is also known that $M\left(B_{p}^{n}\right) \approx n^{\frac{1}{p}-\frac{1}{2}}$ and $\operatorname{vol}_{n}\left(B_{p}^{n}\right)^{1 / n} \approx n^{-\frac{1}{p}}$.
- Let us first assume that $1 \leqslant p \leqslant 2$. Then, ℓ_{p}^{n} has cotype- 2 constant bounded by an absolute (independent from p and n) constant.
- It is also known that $M\left(B_{p}^{n}\right) \approx n^{\frac{1}{p}-\frac{1}{2}}$ and $\operatorname{vol}_{n}\left(B_{p}^{n}\right)^{1 / n} \approx n^{-\frac{1}{p}}$.
- It follows that

$$
M\left(\overline{B_{p}^{n}}\right)=\operatorname{vol}_{n}\left(B_{p}^{n}\right)^{1 / n} M\left(B_{p}^{n}\right) \approx 1 / \sqrt{n} .
$$

- Let us first assume that $1 \leqslant p \leqslant 2$. Then, ℓ_{p}^{n} has cotype- 2 constant bounded by an absolute (independent from p and n) constant.
- It is also known that $M\left(B_{p}^{n}\right) \approx n^{\frac{1}{p}-\frac{1}{2}}$ and $\operatorname{vol}_{n}\left(B_{p}^{n}\right)^{1 / n} \approx n^{-\frac{1}{p}}$.
- It follows that

$$
M\left(\overline{B_{p}^{n}}\right)=\operatorname{vol}_{n}\left(B_{p}^{n}\right)^{1 / n} M\left(B_{p}^{n}\right) \approx 1 / \sqrt{n}
$$

- Since $\overline{B_{p}^{n}}$ is isotropic and its isotropic constant is also bounded by an absolute constant, the general estimate for the cotype-2 case gives

$$
\|\mathbf{t}\|_{\overline{B_{p}^{n}}, \overline{B_{p}^{n}}} \leqslant c_{1}\|\mathbf{t}\|_{2}
$$

for every $s \geqslant 1$ and $\mathbf{t} \in \mathbb{R}^{s}$, where $c_{1}>0$ is an absolute constant.

ℓ_{p}^{n}-balls

- Next, let us assume that $2 \leqslant q \leqslant \infty$. It is then known that $\operatorname{vol}_{n}\left(B_{q}^{n}\right)^{1 / n} \approx n^{-\frac{1}{q}}$ and

$$
M\left(B_{q}^{n}\right) \approx \min \{\sqrt{q}, \sqrt{\log n}\} n^{\frac{1}{q}-\frac{1}{2}} .
$$

ℓ_{p}^{n}-balls

- Next, let us assume that $2 \leqslant q \leqslant \infty$. It is then known that $\operatorname{vol}_{n}\left(B_{q}^{n}\right)^{1 / n} \approx n^{-\frac{1}{q}}$ and

$$
M\left(B_{q}^{n}\right) \approx \min \{\sqrt{q}, \sqrt{\log n}\} n^{\frac{1}{q}-\frac{1}{2}} .
$$

- It follows that

$$
M\left(\overline{B_{q}^{n}}\right)=\operatorname{vol}_{n}\left(B_{q}^{n}\right)^{1 / n} M\left(B_{q}^{n}\right) \approx \min \{\sqrt{q}, \sqrt{\log n}\} / \sqrt{n} .
$$

- Next, let us assume that $2 \leqslant q \leqslant \infty$. It is then known that $\operatorname{vol}_{n}\left(B_{q}^{n}\right)^{1 / n} \approx n^{-\frac{1}{q}}$ and

$$
M\left(B_{q}^{n}\right) \approx \min \{\sqrt{q}, \sqrt{\log n}\} n^{\frac{1}{q}-\frac{1}{2}}
$$

- It follows that

$$
M\left(\overline{B_{q}^{n}}\right)=\operatorname{vol}_{n}\left(B_{q}^{n}\right)^{1 / n} M\left(B_{q}^{n}\right) \approx \min \{\sqrt{q}, \sqrt{\log n}\} / \sqrt{n} .
$$

- Since $\overline{B_{q}^{n}}$ is an isotropic ψ_{2}-convex body with constant $\varrho \approx 1$ (independent from q and n), and its isotropic constant is also bounded by an absolute constant, the general estimate for the ψ_{2}-case gives

$$
\|\mathbf{t}\|_{\overline{B_{q}^{s}}, \overline{B_{q}^{\bar{n}}}} \leqslant c_{2} \min \{\sqrt{q}, \sqrt{\log n}\}\|\mathbf{t}\|_{2}
$$

for every $s \geqslant 1$ and $\mathbf{t} \in \mathbb{R}^{s}$, where $c_{2}>0$ is an absolute constant.

