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The question

Let K be a symmetric convex body in Rn.

For any s-tuple C = (C1, . . . ,Cs) of symmetric
convex bodies Cj in Rn we consider the norm on Rs , defined by

‖t‖C,K =
1∏s

j=1 voln(Cj)

∫
C1

· · ·
∫
Cs

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
dxs · · · dx1,

where t = (t1, . . . , ts). If C = (C , . . . ,C) then we write ‖t‖C s ,K instead of ‖t‖C,K .

Question (V. Milman)

To examine if, in the case C = K , one has that ‖ · ‖K s ,K is equivalent to the standard
Euclidean norm up to a term which is logarithmic in the dimension, and in particular, if
under some cotype condition on the norm induced by K to Rn one has equivalence
between ‖ · ‖K s ,K and the Euclidean norm.
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Lower bounds

Bourgain, Meyer, V. Milman and Pajor (80’s) obtained the lower bound

‖t‖C,K > c
√
s
( s∏

j=1

|tj |
)1/s( s∏

j=1

voln(Cj)
) 1

sn
/voln(K)1/n,

where c > 0 is an absolute constant.

Around 2000, Gluskin and V. Milman studied the same question and obtained a
better lower bound in a more general context.

Gluskin-Milman

Let A1, . . . ,As be measurable sets in Rn and K be a star body in Rn with 0 ∈ int(K).
Then, for all t = (t1, . . . , ts) ∈ Rs ,

‖t‖A,K :=
1∏s

j=1 voln(Aj)

∫
A1

· · ·
∫
As

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
dxs · · · dx1 > c

( s∑
j=1

t2j

(voln(Aj)

voln(K)

)2/n)1/2
,

where c > 0 is an absolute constant. Equivalently, if voln(Aj) = voln(K) for all 1 6 j 6 s
then

‖t‖A,K > c ‖t‖2
for all t ∈ Rs .
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Lower bounds

Gluskin and V. Milman use the Brascamp-Lieb-Luttinger rearrangement inequality.

One may assume that voln(Ai ) = voln(K) = voln(Bn
2 ) for all 1 6 i 6 s.

Using the BLL-inequality, write∫
A1

· · ·
∫
As

1K
( s∑

i=1

tixi

)
dxs · · · dx1 =

∫
Rn
· · ·
∫
Rn

1K
( s∑

i=1

tixi

) s∏
i=1

1Ai
(xi ) dxs · · · dx1

6
∫
Rn
· · ·
∫
Rn

1Bn
2

( s∑
i=1

tixi

) s∏
i=1

1Bn
2
(xi ) dxs · · · dx1 =

∫
Bn
2

· · ·
∫
Bn
2

1Bn
2

( s∑
i=1

tixi

)
dxs · · · dx1.

Next, use the observation that

‖y‖K =

∫ ∞
0

(
1− 1K (y/r)

)
dr .

It follows that

‖t‖Ai ,K =

∫
A1

· · ·
∫
As

∥∥∥ s∑
i=1

tixi
∥∥∥
K

dxs · · · dx1∏
voln(Ai )

>
∫
Bn
2

· · ·
∫
Bn
2

∥∥∥ s∑
i=1

tixi
∥∥∥
Bn
2

dxs · · · dx1
voln(Bn

2 )s
.
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Lower bounds

To give a lower bound for this quantity, write∫
Bn
2

· · ·
∫
Bn
2

∥∥∥ s∑
i=1

tixi

∥∥∥
Bn
2

dxs · · · dx1
voln(Bn

2 )
s
=

∫
Bn
2

· · ·
∫
Bn
2

Aveεi=±1

∥∥∥ s∑
i=1

εi tixi

∥∥∥
Bn
2

dxs · · · dx1
voln(Bn

2 )
s

>
1
√
2

∫
Bn
2

· · ·
∫
Bn
2

( s∑
i=1

t2i |xi |
2
)1/2 dxs · · · dx1

voln(Bn
2 )

s
,

using the unconditionality of Bn
2 and Khinthcine inequality.

To finish the proof one may use the inequality

‖f ‖2 6 ‖f ‖1/31 ‖f ‖
2/3
4

for the function f (x) =
(∑s

i=1 t
2
i |xi |2

)1/2
defined on Rns to estimate the last integral

and get the result with

c =
1
√
2

( n

n + 2

)3/2√n + 4

n
→

1
√
2

as n→∞.

Apostolos Giannopoulos (University of Athens) Norms of weighted sums AGA IV, July 2019 5 / 28



Lower bounds

To give a lower bound for this quantity, write∫
Bn
2

· · ·
∫
Bn
2

∥∥∥ s∑
i=1

tixi

∥∥∥
Bn
2

dxs · · · dx1
voln(Bn

2 )
s
=

∫
Bn
2

· · ·
∫
Bn
2

Aveεi=±1

∥∥∥ s∑
i=1

εi tixi

∥∥∥
Bn
2

dxs · · · dx1
voln(Bn

2 )
s

>
1
√
2

∫
Bn
2

· · ·
∫
Bn
2

( s∑
i=1

t2i |xi |
2
)1/2 dxs · · · dx1

voln(Bn
2 )

s
,

using the unconditionality of Bn
2 and Khinthcine inequality.

To finish the proof one may use the inequality

‖f ‖2 6 ‖f ‖1/31 ‖f ‖
2/3
4

for the function f (x) =
(∑s

i=1 t
2
i |xi |2

)1/2
defined on Rns to estimate the last integral

and get the result with

c =
1
√
2

( n

n + 2

)3/2√n + 4

n
→

1
√
2

as n→∞.

Apostolos Giannopoulos (University of Athens) Norms of weighted sums AGA IV, July 2019 5 / 28



Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let C = (C1, . . . ,Cs) be an s-tuple of symmetric convex bodies and K be a symmetric
convex body in Rn with voln(Cj) = voln(K) = 1. Then, for any t = (t1, . . . , ts) ∈ Rs ,

‖t‖C,K >
n

e(n + 1)
‖t‖2.

Since ‖t‖C,K is a norm, we may assume that ‖t‖2 = 1. Our starting point is the next
observation.

An identity

Let X1, . . . ,Xs be independent random vectors, uniformly distributed on C1, . . . ,Cs

respectively. Given t = (t1 . . . , ts) ∈ Rs , we write νt for the distribution of the random
vector t1X1 + · · ·+ tsXs . Then,

‖t‖C,K =

∫
Rn

‖x‖Kdνt(x).

Note that νt is an even log-concave probability measure on Rn We write gt for the
density of νt.
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Lower bounds: alternative proof

Lemma 1

If ‖t‖2 = 1 then ‖gt‖∞ 6 en.

Recall that the entropy functional of a random vector X in Rn with density g(x) is
defined by h(X ) = −

∫
Rn g(x) log g(x) dx , provided the integral exists.

Bobkov and Madiman have shown that if g is log-concave then

log(‖g‖−1
∞ ) 6 h(X ) 6 n + log(‖g‖−1

∞ ).

Let t ∈ Rs with ‖t‖2 = 1 and t1, . . . , ts > 0. Then, if X1, . . . ,Xs are independent
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Lower bounds: alternative proof

Lemma 1

If ‖t‖2 = 1 then ‖gt‖∞ 6 en.

Lemma 2

Let f be a bounded positive density of a probability measure µ on Rn. For any symmetric
convex body K in Rn and any p > 0 one has(

n

n + p

)1/p

6

(∫
Rn

‖x‖pK f (x) dx

)1/p

‖f ‖1/n∞ voln(K)1/n.

We apply Lemma 2 for the log-concave probability measure νt. For any t ∈ Rs with
‖t‖2 = 1 we have ‖gt‖∞ = gt(0) 6 en, therefore

n

n + 1
6 e voln(K)1/n

∫
Rn

‖x‖K dνt(x) = e voln(K)1/n ‖t‖C,K .

This shows that if C = (C1, . . . ,Cs) is an s-tuple of symmetric convex bodies of
volume 1 and K is a symmetric convex body in Rn then, for any s > 1 and any
t = (t1, . . . , ts) ∈ Rs

‖t‖C,K >
n

e(n + 1)
voln(K)−1/n ‖t‖2.
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Isotropic convex bodies

A convex body C in Rn is called isotropic if it has volume 1, it is centered, i.e. its
barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix:
there exists a constant LC > 0 such that

‖〈·, ξ〉‖2L2(C) :=

∫
C

〈x , ξ〉2dx = L2
C

for all ξ ∈ Sn−1.

We shall use the fact that if C is isotropic then R(C) 6 cnLC for some absolute
constant c > 0.

The hyperplane conjecture asks if there exists an absolute constant A > 0 such that

Ln := max{LC : C is isotropic in Rn} 6 A

for all n > 1.

Bourgain proved that Ln 6 c 4
√
n logn; later, Klartag improved this bound to

Ln 6 c 4
√
n.
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Log-concave measures

A Borel measure µ on Rn is called log-concave if µ(λA+ (1−λ)B) > µ(A)λµ(B)1−λ

for any compact subsets A and B of Rn and any λ ∈ (0, 1).

A function f : Rn → [0,∞) is called log-concave if its support {f > 0} is a convex
set and the restriction of log f to it is concave. If a probability measure µ is
log-concave and µ(H) < 1 for every hyperplane H, then µ has a log-concave density
fµ.
If C is a convex body in Rn then the Brunn-Minkowski inequality implies that 1C is
the density of a log-concave measure.
If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant
of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[detCov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixj fµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xi fµ(x) dx∫
Rn fµ(x) dx

∫
Rn xj fµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered,
i.e. if ∫

Rn

〈x , ξ〉dµ(x) =

∫
Rn

〈x , ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1, and Cov(µ) is the identity matrix.
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Log-concave measures

If C is a centered convex body of volume 1 in Rn then we say that a direction
ξ ∈ Sn−1 is a ψα-direction (where 1 6 α 6 2) for C with constant % > 0 if

‖〈·, ξ〉‖Lψα (C) 6 %‖〈·, ξ〉‖L2(C),

where

‖〈·, ξ〉‖Lψα (C) := inf
{
t > 0 :

∫
C

exp
(
(|〈x , ξ〉|/t)α

)
dx 6 2

}
.

Similar definitions may be given in the context of a centered log-concave probability
measure µ on Rn.

From log-concavity it follows that every ξ ∈ Sn−1 is a ψ1-direction for any C or µ
with an absolute constant %: there exists % > 0 such that

‖〈·, ξ〉‖Lψ1
(µ) 6 %‖〈·, ξ〉‖L2(µ)

for all n > 1, all centered log-concave probability measures µ on Rn and all ξ ∈ Sn−1.
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Upper bounds

We assume that C is an isotropic convex body in Rn. We shall try to give upper
estimates for ‖t‖C s ,K , where K is a symmetric convex body in Rn.

Let X1, . . . ,Xs be independent random vectors, uniformly distributed on C . Given
t = (t1 . . . , ts) ∈ Rs with ‖t‖2 = 1, we write νt for the distribution of the random
vector t1X1 + · · ·+ tsXs . It is then easily verified that the covariance matrix Cov(νt)
of νt is a multiple of the identity: more precisely,

Cov(νt) = L2
C In.

It follows that if gt is the density of νt then ft(x) = Ln
Cgt(LCx) is the density of an

isotropic log-concave probability measure µt on Rn. Indeed, we have∫
Rn

ft(x)xixj dx = Ln
C

∫
Rn

gt(LCx)xixj dx = L−2
C

∫
Rn

gt(y)yiyj dy = δij

for all 1 6 i , j 6 n.

From Lemma 1

Lµt = ‖ft‖
1
n
∞ = LC‖gt‖

1
n
∞ 6 eLC

for all t ∈ Rs with ‖t‖2 = 1.

We also have

‖t‖C s ,K =

∫
Rn

‖x‖K dνt(x) = L−n
C

∫
Rn

‖x‖K ft(x/LC ) dx = LC

∫
Rn

‖y‖Kdµt(y).
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Upper bounds

Since ‖t‖C s ,K = ‖t‖(TC)s ,TK for any T ∈ SL(n), we may restrict our attention to the
case where C is isotropic.

In this case
‖t‖C s ,K = ‖t‖2LC I1(µt,K),

where µt is an isotropic, compactly supported log-concave probability measure
depending on t and I1(µ,K) =

∫
Rn ‖x‖Kdµ(x).

Note that if µ is isotropic and K is a symmetric convex body of volume 1 in Rn then∫
O(n)

I1(µ,U(K)) dν(U) =

∫
Rn

∫
O(n)

‖x‖U(K)dν(U) dµ(x)

= M(K)

∫
Rn

‖x‖2dµ(x) ≈
√
nM(K),

where

M(K) :=

∫
Sn−1

‖ξ‖Kdσ(ξ)

and ν, σ denote the Haar probability measures on O(n) and Sn−1 respectively.

It follows that
∫
O(n)
‖t‖U(C)s ,K ≈ (LC

√
nM(K)) ‖t‖2.

Therefore, our goal is to obtain a constant of the order of LC

√
nM(K) in our upper

estimate for ‖t‖C s ,K .
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Bounds for M(Kiso)

In particular, in the case C = K we may assume that K is isotropic, and an optimal
upper bound would be O(LK

√
nM(Kiso)).

The question to estimate the parameter M(K) for an isotropic symmetric convex
body K in Rn remains open.

One may hope that LK

√
nM(Kiso) 6 c(log n)b for some absolute constant b > 0.

However, the currently best known estimate is

M(Kiso) 6
c(log n)2/5

10
√
nLK

.

proved in [G. - E. Milman].

There, it is also shown that in the case where K is a ψ2-body with constant % one
has

M(Kiso) 6
c 3
√
%(log n)1/3

6
√
nLK

.
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A simple upper bound

A simple upper bound

Let C be an isotropic convex body in Rn and K be a symmetric convex body in Rn. If
R(K◦) is the radius of K◦ then, for any s > 1 and t = (t1, . . . , ts) ∈ Rs ,

‖t‖C s ,K 6
√
nLCR(K◦) ‖t‖2.

For the proof we use the identity ‖t‖C s ,K = ‖t‖2LC I1(µt,K) and the simple inequality
‖y‖K 6 b‖y‖2, where b = b(K) = R(K◦). Note that

I1(µt,K) 6 b

∫
Rn

‖y‖2dµt(y) 6 b
√
n.

An application: If K is a symmetric convex body in Rn then the modulus of convexity of
K is the function δK : (0, 2]→ R defined by

δK (ε) = inf
{

1−
∥∥∥x + y

2

∥∥∥
K

: ‖x‖K , ‖y‖K 6 1, ‖x − y‖K > ε
}
.

Then, K is called 2-convex with constant α if, for every ε ∈ (0, 2],

δK (ε) > αε2.

Examples of 2-convex bodies are given by the unit balls of subspaces of Lp-spaces,
1 < p 6 2; one can check that the definition is satisfied with α ≈ p − 1.
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2-convex bodies

2-convex bodies

Let C be an isotropic convex body in Rn and K be an isotropic symmetric convex body in
Rn which is also 2-convex with constant α. Then for any s > 1 and t = (t1, . . . , ts) ∈ Rs ,

‖t‖C s ,K 6
cLC√
α
‖t‖2

where c > 0 is an absolute constant.

In particular, for any symmetric convex body K in
Rn which is 2-convex with constant α, we have that

‖t‖K s ,K 6
c

α
‖t‖2.

Klartag and E. Milman have proved that if K is a symmetric convex body of volume
1 in Rn, which is also 2-convex with constant α, then LK 6 c1/

√
α.

Moreover, if K is isotropic then c2
√
α
√
nBn

2 ⊆ K .

Proof: The first claim follows from the fact that R(K◦) 6 c−1
2 /(
√
α
√
n).

For the second assertion we may assume that K is isotropic. Since LK 6 c1/
√
α we see

that

EK s

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
6

c−1
2 LK√
α
‖t‖2 6

c3
α
‖t‖2.
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A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in Rn and K be a symmetric convex body in Rn. Then,

‖t‖C s ,K 6 c
(
LC max

{
4
√
n,
√

log(1 + s)
})√

nM(K)‖t‖2

for every t = (t1, . . . , ts) ∈ Rs , where c > 0 is an absolute constant.

Assume that ‖t‖2 = 1.

Our starting point will be again

‖t‖C s ,K = LC I1(µt,K),

so we try to give an upper bound for I1(µt,K).
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A general upper bound

We shall use a number of facts.

Paouris

If µ is an isotropic log-concave probability measure on Rn, then

µ({x ∈ Rn : ‖x‖2 > c1 r
√
n}) 6 e−r

√
n

for every r > 1, where c1 > 0 is an absolute constant.

Support

Since R(C) 6 c2nLC and supp(νt) ⊆ sC , we have that

supp(µt) ⊆
s

LC
C ⊆ (c2ns)Bn

2

for any t = (t1, . . . , ts) ∈ Rs with ‖t‖2 = 1.
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A general upper bound

We fix r > 1 and set Ct(r) = supp(µt) ∩ c1r
√
nBn

2 . We may write∫
Rn

‖x‖K dµt(x) =

∫
Ct(r)

‖x‖K dµt(x) +

∫
supp(µt)\Ct(r)

‖x‖K dµt(x)

6
∫
Ct(r)

‖x‖K dµt(x) + b(K)

∫
supp(µt)\Ct(r)

‖x‖2dµt(x)

6
∫
Ct(r)

‖x‖K dµt(x) + b(K) (c2ns) e−r
√
n.

For the first term, we consider the log-concave probability measure µt,r with density

1

µt(Ct(r))
1Ct(r)ft

and the stochastic process (wy )y∈K◦ on (Rn, µt,r ), where wy (x) = 〈x , y〉.
We consider a standard Gaussian random vector G in Rn, and for y ∈ K◦ set
hy (G) = 〈G , y〉. Note that

E
(

max
y∈K◦

hy (G)
)

= E ‖G‖K ≈
√
nM(K).
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A general upper bound

To bound E(maxy∈K◦ wy ), we will use Talagrand’s comparison theorem.

Talagrand

If (Yt)t∈T is a Gaussian process and (Xt)t∈T is a stochastic process such that

‖Xs − Xt‖ψ2 6 α ‖Ys − Yt‖2

for some α > 0 and every s, t ∈ T , then

E
(

max
t∈T

Xt

)
6 cαE

(
max
t∈T

Yt

)
.

It is easily checked that ‖hy − hz‖2 = ‖y − z‖2 for all y , z ∈ K◦. To bound the ψ2

norm of wy − wz , we use the inequality ‖h‖ψ2 6
√
‖h‖ψ1‖h‖∞. Note that

‖wy − wz‖L∞(µt,r ) 6 R(Ct(r))‖y − z‖2 6 c1r
√
n‖y − z‖2

and we also have

‖wy − wz‖Lψ1 (µt,r )
6 c3‖wy − wz‖L2(µt,r ) 6 2c3‖y − z‖2

for some absolute constant c3 > 0 (here we also use the fact that

µ(Ct(r)) > 1− e−r
√

n > 1/2). It follows that

‖wy − wz‖Lψ2 (µt,r )
6 c4
√
r 4
√
n ‖hy − hz‖2.
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A general upper bound

Then, ∫
Ct(r)

‖x‖K dµt(x) = µt(Ct(r))Eµt,r

(
max
y∈K◦

wy

)
6 c5
√
r 4
√
nE
(

max
y∈K◦

hy
)

≈
√
r 4
√
n
√
nM(K).

Finally, ∫
Rn

‖x‖K dµt(x) 6 c ′1

(√
r 4
√
n
√
nM(K) + b(K) ns e−r

√
n
)
.

Since b(K) 6 c6
√
nM(K) we have that

b(K) ns e−r
√
n 6 c6nse

−r
√
n√nM(K) 6

√
r 4
√
n
√
nM(K)

if we choose

r ≈ max
{

1,
log(1 + s)√

n

}
.

Therefore,

‖t‖C s ,K = LC I1(µt,K) 6
(
c ′2LC max

{
1,

√
log(1 + s)

4
√
n

}
4
√
n
)√

nM(K)

as claimed.
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ψ2-case

Adapting the proof of the previous theorem one can show that if C is assumed a
ψ2-body with constant %, which means that every direction ξ is a ψ2-direction for C
with constant %, then a much better estimate is available.

ψ2-case

Let C be an isotropic convex body in Rn, which is a ψ2-body with constant %, and K be
a symmetric convex body in Rn. Then for any s > 1 and every t = (t1, . . . , ts) ∈ Rs ,

‖t‖C s ,K 6 c%2
√
nM(K) ‖t‖2

where c > 0 is an absolute constant.
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Cotype-2 case

Let K be a symmetric convex body in Rn. Recall that if XK is the normed space
with unit ball K , we write C2,k(XK ) for the best constant C > 0 such that

(
Eε
∥∥∥ k∑

i=1

εixi
∥∥∥2
K

)1/2
>

1

C

( k∑
i=1

‖xi‖2K
)1/2

for all x1, . . . , xk ∈ X . Then, the cotype-2 constant of XK is defined as
C2(XK ) := supk C2,k(XK ).

Replacing the εj ’s by independent standard Gaussian random variables gj in the
definition above, one may define the Gaussian cotype-2 constant α2(XK ) of XK . One
can check that α2(XK ) 6 C2(XK ).
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(
Eε
∥∥∥ k∑

i=1

εixi
∥∥∥2
K

)1/2
>

1

C

( k∑
i=1

‖xi‖2K
)1/2

for all x1, . . . , xk ∈ X . Then, the cotype-2 constant of XK is defined as
C2(XK ) := supk C2,k(XK ).

Replacing the εj ’s by independent standard Gaussian random variables gj in the
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Cotype-2 case

E. Milman

If µ is a finite, compactly supported isotropic measure on Rn then, for any symmetric
convex body K in Rn,

I1(µ,K) 6 c1α2(XK )
√
nM(K) 6 c1C2(XK )

√
nM(K).

Cotype-2 case

Let C be an isotropic symmetric convex body in Rn and K be a symmetric convex body
in Rn. Then for any s > 1 and t = (t1, . . . , ts) ∈ Rs ,

EC s

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
6
(
c1LCC2(XK )

√
nM(K)

)
‖t‖2

where c1 > 0 is an absolute constant.
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Cotype-2 case

For the proof we combine the identity

‖t‖C,K =

∫
Rn

‖x‖Kdνt(x) = LC I1(µt,K)

with the bound I1(µt,K) 6 c1C2(XK )
√
nM(K) to get

‖t‖C s ,K 6 c1LCC2(XK )
√
nM(K)

for all t ∈ Rs with ‖t‖2 = 1.

In particular, for any symmetric convex body K of volume 1 in Rn we have that

EK s

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
6
(
c2LKC2(XK )

√
nM(Kiso)

)
‖t‖2,

where Kiso is an isotropic image of K .
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Unconditional case

Unconditional case

There exists an absolute constant c > 0 with the following property: if K and C1, . . . ,Cs

are isotropic unconditional convex bodies in Rn then, for every q > 1,(∫
C1

. . .

∫
Cs

∥∥∥ s∑
j=1

tjxj
∥∥∥q
K
dx1 . . . dxs

)1/q
6 cn1/q√q ·max{‖t‖2,

√
q‖t‖∞} 6 cn1/qq ‖t‖2,

for every t = (t1, . . . , ts) ∈ Rs . In particular,

‖t‖C,K 6 c
√

log n ·max{‖t‖2,
√

log n‖t‖∞} 6 c log n ‖t‖2.

This is essentially proved in [G.-Hartzoulaki-Tsolomitis].

The proof makes use of the comparison theorem of Bobkov and Nazarov.
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`np-balls

Let us first assume that 1 6 p 6 2. Then, `np has cotype-2 constant bounded by an
absolute (independent from p and n) constant.

It is also known that M(Bn
p ) ≈ n

1
p
− 1

2 and voln(Bn
p )1/n ≈ n−

1
p .

It follows that
M(Bn

p ) = voln(Bn
p )1/nM(Bn

p ) ≈ 1/
√
n.

Since Bn
p is isotropic and its isotropic constant is also bounded by an absolute

constant, the general estimate for the cotype-2 case gives

‖t‖Bn
p
s
,Bn

p
6 c1 ‖t‖2

for every s > 1 and t ∈ Rs , where c1 > 0 is an absolute constant.
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`np-balls

Next, let us assume that 2 6 q 6∞. It is then known that voln(Bn
q )1/n ≈ n−

1
q and

M(Bn
q ) ≈ min{√q,

√
log n}n

1
q
− 1

2 .

It follows that

M(Bn
q ) = voln(Bn

q )1/nM(Bn
q ) ≈ min{√q,

√
log n}/

√
n.

Since Bn
q is an isotropic ψ2-convex body with constant % ≈ 1 (independent from q

and n), and its isotropic constant is also bounded by an absolute constant, the
general estimate for the ψ2-case gives

‖t‖Bn
q
s
,Bn

q
6 c2 min{√q,

√
log n} ‖t‖2

for every s > 1 and t ∈ Rs , where c2 > 0 is an absolute constant.
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