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1 The asymptotic growth of the diameter of
Minkowski compactum

For two n-dimensional normed spaces X = (R", B’) and Y = (R", B”) with
unit balls B’, B”, respectively the Banach—Mazur distance is defined by

d(X,Y) = d(B,B") =t{|T: B' = B"|| |IT™": B = B[},

with the infimum taken over all invertible operators T' € L(R"™). (Here we
adopt a convenient but not very usual notation

|72 B" = B"|| = sup{||Tx|| g | ||| o < 1}

is the operator norm of 7" from X to Y.)

The Minkowski compactum M,, is the set of all n-dimensional Banach
spaces equipped with the Banach—-Mazur distance. (Strictly speaking, M,, is
the set of equivalence classes of n-dimensional Banach spaces, with isometric
spaces being identified.) From John’s theorem, d(X, ¢3) < y/n, and thus the
diameter diam M, = supyy d(X,Y) < n. However, the natural question



about the lower bound for diam M,, was widely open until 1980. The break-
through was made by Gluskin who introduced random finite-dimensional
spaces in order to show in [G1] that the diameter of the Minkowski com-
pactum M, is asymptotically of order n. We present the complete proof of
this result in the Gaussian setting.

By g € R we denote the Gaussian random vector with N (0, %In) distri-
bution. The density of g is equal to

(n/2m)""2 exp (—nlz[*/2).

Since E|g|*> = 1 we call g a normalized Gaussian vector (by | - | we denote
the Euclidean norm on R™).
Basic properties of Gaussian vectors fundamental in the proof (see e.g.,

[DS)).

Fact 1 Let g € R" be a normalized Gaussian random vector. Then for every
Borel measurable set B C H,

P{w € Q| g(w) € B} < e"?vol B/vol By. (1)
Furthermore, for any a,b > 0 we have
Plw e Q| [g(w)| < a} > 1 — (V2e /4" (2)

and

P{w € Q| |g(w)| = 1/b} = 1= (Ve/b)". (3)
Outline of the Proof. The proof of (1) is very simple. Observe that

Plwe | glw) € B} — (n/27r)”/2/ exp (—nlz[?/2)dz

B

< (n/27r)”/2/ dx < C"vol B/vol By.  (4)
B
Using vol By ~ n™™? we get some numerical constant C; to get factor e™/?

use the formula for the volume of B3 and Stirling’s formula,

vol B} = 7"2/T(1+n/2).



Estimate (3) immediately follows from (4). The following short proof
of (2) is taken from [MT2]. Write a normalized Gaussian vector g in R”
in the form g = n=Y23""  h;e;, where h; are standard N(0, 1) distributed
independent Gaussian variables. Fix an arbitrary A € (0,1/2). Setting

y =+ 1— 2\t we have

(2m)~1/? /OO eAVDE g — (1 —2)) "2 (27) /2 /OO eV 2dy = (1—2X)71/2,

[e.9] —00

Hence for every a > 0 we have

P{weQlllg(w)ll > a} = P{lw e Q| Zh?(W) > a’n}

n

< €a2,\n/€)\2?_lh%(w)dﬂp(w) :e,a2>\n H(27T)1/2/ e()‘*l/Q)z?da;i
9)

i=1 —00
< <e_“2’\(1—2)\)_1/2> . (5)
Letting A = 1/4, we get (2). O
Let N > 1. Let gi1,...,gn be independent normalized Gaussian vectors

distributed as g; for convenience denote the underlying probability spaces by
Qi,...,Qy. Wealsolet Q =0, ®...® Qy.
Gluskin’s random polytope Ky in R" is defined by

Kn(w) = conv{tey,...,xe,, £g1(w1), ..., £gn(wn)}, (6)
for w = (wy,...,wn) € Q.

Now let ¢1,...,9, and g7, ..., g% be independent copies of g, on the
corresponding probability spaces (2.’s and 2/’s; and consider appropriate ¢’
and " similar as above.

To avoid sometimes cumbersome dependence of the estimates on the pa-
rameters, we shall assume from now on that N = n. Still, in many places
we will write NV to emphasize the number of random vertices rather than the
dimension of the space.

(We should also mention that in some other problems some larger values
of N might be needed, like N ~ n? or some other powers of n.)



Theorem 2 ([G1l]) There exist constants ¢ > 0 and C' > 1 such that for
n > 1 and N = n the following is true: The set of pairs (w'.w") € Q' @ Q"
such that

d(Ky (W), K§(w")) <cn

has probability less than C'N exp(—cn). Therefore, with probability close to
1, d(Ky(w'), Ki(w")) > en.

First we pass to subsets ) C ' and € C Q" such that all Gaussian
vectors ¢, and g/ (for 1 < ¢ < N) have the Euclidean norms less than or
equal to 2. (By (2), probability of the subset of €' on which |g| > 2 is less
than exp(—cn), therefore removing from @ all such subsets for i =1,..., N
results in the estimate P'(€) > 1 — Ne=". Also, P'(Q2j) > 1 — Ne~“".) The
rest of the proof will be done on the space

0 = 96 ® an (7)
with probabilities P(€2), P(2) > 1 — Ne™“".

In the main part of the argument w” € € is fixed, and we investigate the
random behaviour depending on w’ € €%.

Steps I, II and III appear in some form in most (or perhaps even all)
proofs of this type, and we describe them as we proceed.

Step I. Estimates for a single operator
Recall that below we take N = n. For a > 0, a centrally symmetric
convex body B C R", and an operator T' € L(R™), we let

Ale, B,T) = {w € Q| |T: Ky(w) — B|| < av/n}. (8)

Lemma 3 Let B C R" be a centrally symmetric convex body. For every
operator T € L(R™) with det(T') = 1 and every a > 0 one has

vol BY

P{A(a, B,T)} < <(coa\/ﬁ)" vol 5 ) .



Proof. By Fact 1 we have
P{A(0, B,T)} = P{T(Ky(w)) C aviiB}

< HP{T%(%) € ay/nB}

= HP{gi(wi) € ay/nT™' B}

N vol T"'B

< n 7 =
- H(cooz\/ﬁ) vol BY
18\
, VO
N ((coa\/ﬁ) vol BQ) ’
where ¢g > 0 is an absolute constant. O

Lemma 4 Let B C R" be a centrally symmetric convex body of the form
B = conv{txy,...,xxp} for M = 2n, and some vectors x; € R™ with the
Euclidean norm |z;| < 2, for 1 <i < M. Then

c n/2
vol B < <—1) ,
n

where ¢; > 0 is an absolute constant.

Proof. Write B = conv {y1, ..., yan} where for every 1 < j < 2M, y; equals
to +x; or —x; for some 1 < i < M. For every subset o of {1,2,...,2M} of
cardinality n + 1, define B, by B, = conv{y; | j € o}. By Caratheodory’s
theorem, B = |J, B,. By Hadamard’s inequality, vol B, < 2"vol B} =
4" /n!. So by Stirling’s formula

AM 4n C1 "
VOIBSZVOI B, < (n+1)ﬁ < (5) :

where ¢; > 0 is an absolute constant. O

Conclusion of Step I: For every a > 0, any fixed polytope K} (w”) C 2B,
and any operator 7" € L(R") with detT" = 1, we have

P(A(a, K7, T)) < (c20)", (9)
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In fact, it is sufficient to consider the sets A(a, K7, T) for a sufficiently
dense net in a suitable set of operators.

Step II. Discretization, e-nets in spaces of operators

Recall that if By is a centrally symmetric convex body in R”, and A C R"
and 6 > 0 then NV is a -net in A with respect to B; if N C A and for every
x € A there is z € N such that x — 2z € §B;. The following lemma is
standard.

Lemma 5 Let By C By be two centrally symmetric convex bodies in R".
For every subset A C By there exists a 1-net N in A with respect to By with
cardinality |IN'| < 3" vol By/vol Bj.

Proof. Let N = {x1,..., 2y} be a maximal subset of A satisfying z; —x; ¢
By for all ¢ # j. The maximality implies that it is a 1-net in A. Consider the
set UM, (z; + $B1) C (14 3)Bs, and note that the sets forming the union are
mutually disjoint translates of £B;. Thus M(3)"vol By < (3)"vol B,. DO

We shall identify, in the canonical way, operators from L(R™) with n x n
matrices, considered as elements of R™. In particular, this allows to consider
the n2-dimensional volume of any Borel set of operators. We shall consider
two sets of operators (B} and B} below denote the unit ball in ¢ and ¢7,
respectively):

By, ={T € LR") | |T: By — By|| <1},
and, for a centrally symmetric convex body B C R",
op =T € LR") | [[T": B = B|| < 1}.

Lemma 6 We have vol B} 5 = (vol B)" and vol By, > (cr/n)" /2, where
c1 > 0 is a universal constant.

The ball By, ; has a very simple structure: it is just the Cartesian product
of n copies of B, B x ... x B. So the formula for the first volume is obvious.
The remaining lower bound is by now standard and based on a fundamental
upper bound for the norm of a Gaussian matrix. For sake of completeness
we briefly describe it — following [MT2] — at the end of this section, and we
give a short elementary proof

We formulate the conclusion of Step II in the next corollary.
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Corollary 7 Let B C R"™ be a centrally symmetric convex body and let t > 0
be such that tBy C B. Every subset A C By, 5 admits a t-net N, with respect
to the operator norm on €3 with card (N') < (C/t)" (vol B/ vol B})™, where

C' is an absolute constant.

This follows immediately from Lemmas 6 and 5, by observing that the con-
dition tBy C B implies tB}, C By, p (in turn, this observation follows by

direct checking on appropriate norms of operators).

Step III. Perturbation argument, the end of the proof
Fix any w” € Qf and denote K% (w") by Ky (recall that Ky C 2B%).
For any o > 0 consider the set A(a, Ky) of all w' € ), such that there
exists T € L(R™), with detT = 1 such that |7 : Ki(w') = Ky|| < ay/n.
This is our “ultimately bad” set. Any polytope K associated with this set
admits operators of small operator norms from K to Ky. Tt is clear that
we need to remove this set from our considerations.

We have B B
A, Ky) = JA(a, Ky, T), (10)
T

where the union runs over all T € L(R™) with det 7" = 1.

Lemma 8 For sufficiently small o« > 0 one has, for everyn > 1, P(A(a, [?N)) <
27,

Proof. Let A/ be an a-net with minimal cardinality in the set of all operators
T € L(R™), with det T = 1 such that [|T : B} — Ky|| < ay/n, with respect
to the operator norm on ¢2. By Corollary 7, |[N] < C°, where C; > 1is a
universal constant.

We are going to prove that

Ao, Ky) € | ABa, Ky, T). (11)
TeN
Having proved this, by (9) we get

2

P(|J ABa, Ky, T)) < CF (3ca0)™.
TeN

In turn, for sufficiently small o > 0 this is bounded above by (1/2)"*, con-
cluding the proof.



Comments before proving (11). This is the second crucial point of the
argument. The set defined in (10) is described by a certain condition satified
for all operators T. By comparison, in (11) we consider only a subset of
operators 1T', but this is possible because we weaken the appropriate condition

(from < ay/n to < 3ay/n)

Now we prove (11). Fix o' € A(a, Ky). Let T be an operator with
det T = 1 such that | T : K\ (w') = Kyl < ay/n. Since K contains the
ball B} then T € (a\/ﬁ)B:p 7

Pick Ty € N with |T — T, : BY — B?|| < . Since

n~Y2BY ¢ B! C Kjy(w') and Ky C 2Bl

we get

ITo: Ky(w) = Enl| < T Kp(w) = Knl|l + 1To = T : Kiy(w') = Kyl
< avn+2yn||To — T : BY — By|| < 3ay/n.

Thus o' € A(3a, Ky, Tp), with Ty € N O

Proof of Theorem 2 Fix a > 0 satisfying Lemma 8. Denote by Q the
set of all pairs (w',w") € Qf ® Qf such that for all 7" € L(R™) with detT =1
one has ||T: Kj(w') = K{(w")|| > ay/n. Set T = {(v,w") | (W', o) € Q}.
Using the Fubini theorem for the complement of Q, by (7) and Lemma 8, we
get

PxP(Q)=PxP(T)>1—- Nexp(—cn) — 27"

Hence P x P(QNT) > 1— 2N exp(—cn) +27°).

To complete the proof note that d(Ky(w'), K& (")) > on for (W', w") €
ONT. Indeed, let T € L(R™) be an arbitrary isomorphism. By multiplying T’
by a suitable constant we may assume that det 7' = 1 and det 7~! = 1. Hence
each of the norms ||T": K\ (') — K{(w”)|| and [|T7! : K¥(w”) — Ki(W)]]
is larger than a4/n. O

At the end of the section we give the proof of Lemma 6.
Proof of Lemma 6 The argument for the lower bound for the volume of
By, is based on well known properties of Gaussian matrices. Let G(w) be an
n x n Gaussian matrix whose columns are independent normalized Gaussian



vectors in R™. First recall the tail behaviour of a Gaussian matrix: for every
a > 0 we have

Plw | |Gw): 65 = 6] = a} < (6v2e /)" (12)

(Although these are definitely not the best constants, but they are rather
easy to prove and hence convenient for us to use (see e.g., [MT2] for the
proof based on the same ingredients we used here).

Now observe that n~2/2@ is a normalized Gaussian vector in R"*. There-
fore, applying Fact 1 for the set B = 8n’1/QB§p c R we get

(vol B/ vol By") = (n/s%e)P{||G : 05 — 3]] < 8}.

By (12), probability of the set above is larger than or equal to 1/2, hence,
using the formula for the volume vol B;‘Q we get

vol BT, > (1/2)(n/8%)™ /2 vol By > (¢ [n)""/?,
where ¢ > 0 is a universal constant.

Finally, for the convenience of a non-specialist reader, we sketch the ar-
gument for (12).

Fix an arbitrary a’ > 0. Since matrices G and GU have the same dis-
tribution for any fixed orthogonal matrix U, then by (2) we have, for every
x € Snt

P{G(w)all; > a'} = P{l|G(w)er]lo > a'} < (vV2e~" /)"

By Lemma 5, the unit sphere S"! admits an 1/2-net A/ with respect to
|| - |l2 with cardinality not greater than 6. Set A = {w € Q | ||G(w)x|2 <
' for all z € N'}. Then P(A) > 1 — (6v/2e**/*)*. An easy approximation
argument shows that ||G(w) : €5 — (5] < 24’ for every w € A. Thus the
conclusion follows from the estimate for P(A), setting o’ = a/2. O

2 Banach—Mazur distances between random
projections of convex bodies

Gluskin’s random polytopes Ky in R™ investigated in the previous section
are obtained as linear images of the higher dimensional cross-polytope B’
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in RY', where N’ = n + N = 2n. Indeed, (6) defines Ky via certain matrix,
a part of which is a random Gaussian matrix. This matrix can be actually
made into a full n x N’ random Gaussian matrix, although the proofs are
more technically complicated. Some results of this type were also proved
by various authors for Gaussian projections of the balls BZ],V "forl<p<2.
This in turn leads to similar result about Banach-Mazur distance between
random orthogonal projections Py (BN') or PH(B]iV/) (One should however
note that passing from Gaussian results to analogous results for projections
is not purely formal and sometimes a rather delicate matter.)

It is very interesting that similar results are true for random projections
of an arbitrary centrally symmetric convex body K C RY. As an example
of just one such result, the diameter of a family of random n-dimensional
orthogonal projections of such a body K C RY (for any 1 < n < N was
studied in [MT1] and it was shown that this diameter is larger than or equal
to the square of the Euclidean distances of random k-dimensional projections
of the body (where k = (1/2 — ¢)n, for any € > 0). More precisely,

Theorem 9 For 1 < n < N denote by Gy, the Grassmann manifold of
n-dimensional subspaces of RN with the normalized Haar measure iy .,,; and
for a subspace H C RY, by Py denote the orthogonal projection onto H. Let
K be a symmetric convex body in RN such that the Euclidean unit ball BY

1s the ellipsoid of minimal volume containing K, let 0 < A < 1 and assume
that n < AN. Then

L] AP (). PunK)) diow (1) d (12

GN,m

where ¢ = ¢(A) > 0 depends on X only, and m = [2n/5], say.

In particular this shows that (up to the drop in the dimension) the
Banach—Mazur distance between random n-dimensional projections of an
arbitrary symmetric convex body K C R"™ is of maximal order allowed by
a given Euclidean distance of random projections of K of a slightly smaller
dimension. We should also observe that the drop of dimension is necessary
and the formula is in a certain sense optimal.

10



Most of results in this and related directions proved before 2000 are de-
scribed in the survey paper [MT2] and references therein. Theorem 9 is a
main result of [MT1]; further developments and applications of the theory
can be found in later papers by various authors.
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