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1 The asymptotic growth of the diameter of

Minkowski compactum

For two n-dimensional normed spaces X = (Rn, B′) and Y = (Rn, B′′) with
unit balls B′, B′′, respectively the Banach–Mazur distance is defined by

d(X, Y ) = d(B′, B′′) = inf
{
‖T : B′ → B′′‖ ‖T−1 : B′′ → B′‖

}
,

with the infimum taken over all invertible operators T ∈ L(Rn). (Here we
adopt a convenient but not very usual notation

‖T : B′ → B′′‖ = sup{‖Tx‖B′′ | ‖x‖B′ ≤ 1}

is the operator norm of T from X to Y .)
The Minkowski compactum Mn is the set of all n-dimensional Banach

spaces equipped with the Banach–Mazur distance. (Strictly speaking,Mn is
the set of equivalence classes of n-dimensional Banach spaces, with isometric
spaces being identified.) From John’s theorem, d(X, `n2 ) ≤

√
n, and thus the

diameter diam Mn = supX,Y d(X, Y ) ≤ n. However, the natural question
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about the lower bound for diam Mn was widely open until 1980. The break-
through was made by Gluskin who introduced random finite-dimensional
spaces in order to show in [G1] that the diameter of the Minkowski com-
pactum Mn is asymptotically of order n. We present the complete proof of
this result in the Gaussian setting.

By g ∈ Rn we denote the Gaussian random vector with N(0, 1
n
In) distri-

bution. The density of g is equal to

(n/2π)n/2 exp (−n|x|2/2).

Since E|g|2 = 1 we call g a normalized Gaussian vector (by | · | we denote
the Euclidean norm on Rn).

Basic properties of Gaussian vectors fundamental in the proof (see e.g.,
[DS]).

Fact 1 Let g ∈ Rn be a normalized Gaussian random vector. Then for every
Borel measurable set B ⊂ H,

P{ω ∈ Ω | g(ω) ∈ B} ≤ en/2 vol B/ vol Bn
2 . (1)

Furthermore, for any a, b > 0 we have

P{ω ∈ Ω | |g(ω)| ≤ a} ≥ 1− (
√

2e−a
2/4)n (2)

and
P{ω ∈ Ω | |g(ω)| ≥ 1/b} ≥ 1− (

√
e/b)n. (3)

Outline of the Proof. The proof of (1) is very simple. Observe that

P{ω ∈ Ω | g(ω) ∈ B} = (n/2π)n/2
∫
B

exp (−n|x|2/2)dx

≤ (n/2π)n/2
∫
B

dx ≤ Cn vol B/ vol Bn
2 . (4)

Using vol Bn
2 ∼ n−n/2 we get some numerical constant C; to get factor en/2

use the formula for the volume of Bn
2 and Stirling’s formula,

vol Bn
2 = πn/2/Γ(1 + n/2).
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Estimate (3) immediately follows from (4). The following short proof
of (2) is taken from [MT2]. Write a normalized Gaussian vector g in Rn

in the form g = n−1/2
∑n

i=1 hiei, where hi are standard N(0, 1) distributed
independent Gaussian variables. Fix an arbitrary λ ∈ (0, 1/2). Setting
y =
√

1− 2λt we have

(2π)−1/2

∫ ∞
−∞

e(λ−1/2)t2dt = (1− 2λ)−1/2(2π)−1/2

∫ ∞
−∞

e−y
2/2dy = (1− 2λ)−1/2.

Hence for every a > 0 we have

P{ ω ∈ Ω | ‖g(ω)‖2 ≥ a} = P{ω ∈ Ω |
n∑
i=1

h2
i (ω) ≥ a2n}

≤ e−a
2λn

∫
Ω

eλ
∑n

i=1 h
2
i (ω)dP(ω) = e−a

2λn

n∏
i=1

(2π)−1/2

∫ ∞
−∞

e(λ−1/2)x2i dxi

≤
(
e−a

2λ(1− 2λ)−1/2
)n
. (5)

Letting λ = 1/4, we get (2). 2

Let N ≥ 1. Let g1, . . . , gN be independent normalized Gaussian vectors
distributed as g; for convenience denote the underlying probability spaces by
Ω1, . . . ,ΩN . We also let Ω = Ω1 ⊗ . . .⊗ ΩN .

Gluskin’s random polytope KN in Rn is defined by

KN(ω) = conv {±e1, . . . ,±en,±g1(ω1), . . . ,±gN(ωN)}, (6)

for ω = (ω1, . . . , ωN) ∈ Ω.

Now let g′1, . . . , g
′
N , and g′′1 , . . . , g

′′
N be independent copies of g, on the

corresponding probability spaces Ω′i’s and Ω′′i ’s; and consider appropriate Ω′

and Ω′′ similar as above.
To avoid sometimes cumbersome dependence of the estimates on the pa-

rameters, we shall assume from now on that N = n. Still, in many places
we will write N to emphasize the number of random vertices rather than the
dimension of the space.

(We should also mention that in some other problems some larger values
of N might be needed, like N ∼ n2 or some other powers of n.)
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Theorem 2 ([G1]) There exist constants c > 0 and C ≥ 1 such that for
n ≥ 1 and N = n the following is true: The set of pairs (ω′.ω′′) ∈ Ω′ ⊗ Ω′′

such that

d
(
K ′N(ω′), K ′′N(ω′′)

)
< cn

has probability less than CN exp(−cn). Therefore, with probability close to
1, d

(
K ′N(ω′), K ′′N(ω′′)

)
≥ cn.

First we pass to subsets Ω′0 ⊂ Ω′ and Ω′′0 ⊂ Ω′′ such that all Gaussian
vectors g′i and g′′i (for 1 ≤ i ≤ N) have the Euclidean norms less than or
equal to 2. (By (2), probability of the subset of Ω′ on which |g′1| ≥ 2 is less
than exp(−cn), therefore removing from Ω′ all such subsets for i = 1, . . . , N
results in the estimate P′(Ω′0) ≥ 1−Ne−cn. Also, P′(Ω′′0) ≥ 1−Ne−cn.) The
rest of the proof will be done on the space

Ω0 = Ω′0 ⊗ Ω′′0, (7)

with probabilities P(Ω′0), P(Ω′′0) ≥ 1−Ne−cn.

In the main part of the argument ω′′ ∈ Ω′′0 is fixed, and we investigate the
random behaviour depending on ω′ ∈ Ω′0.

Steps I, II and III appear in some form in most (or perhaps even all)
proofs of this type, and we describe them as we proceed.

Step I. Estimates for a single operator
Recall that below we take N = n. For α > 0, a centrally symmetric

convex body B ⊂ Rn, and an operator T ∈ L(Rn), we let

A(α,B, T ) = {ω ∈ Ω | ‖T : KN(ω)→ B‖ ≤ α
√
n}. (8)

Lemma 3 Let B ⊂ Rn be a centrally symmetric convex body. For every
operator T ∈ L(Rn) with det(T ) = 1 and every α > 0 one has

P{A(α,B, T )} ≤

(
(c0α
√
n)n

vol B

vol Bn
2

)N

.
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Proof. By Fact 1 we have

P{A(α,B, T )} = P{T (KN(ω)) ⊂ α
√
nB}

≤
N∏
i=1

P{Tgi(ωi) ∈ α
√
nB}

=
N∏
i=1

P{gi(ωi) ∈ α
√
nT−1B}

≤
N∏
i=1

(c0α
√
n)n

vol T−1B

vol Bn
2

=

(
(c0α
√
n)n

vol B

vol Bn
2

)N

,

where c0 > 0 is an absolute constant. 2

Lemma 4 Let B ⊂ Rn be a centrally symmetric convex body of the form
B = conv {±x1, . . . ,±xM} for M = 2n, and some vectors xi ∈ Rn with the
Euclidean norm |xi| ≤ 2, for 1 ≤ i ≤M . Then

vol B ≤
(
c1

n

)n/2
,

where c1 > 0 is an absolute constant.

Proof. Write B = conv {y1, . . . , y2M} where for every 1 ≤ j ≤ 2M , yj equals
to +xi or −xi for some 1 ≤ i ≤ M . For every subset σ of {1, 2, . . . , 2M} of
cardinality n + 1, define Bσ by Bσ = conv {yj | j ∈ σ}. By Caratheodory’s
theorem, B =

⋃
σ Bσ. By Hadamard’s inequality, vol Bσ ≤ 2n vol Bn

1 =
4n/n!. So by Stirling’s formula

vol B ≤
∑
σ

vol Bσ ≤
(

4M

n+ 1

)
4n

n!
≤
(
c1

n

)n
,

where c1 > 0 is an absolute constant. 2

Conclusion of Step I: For every α > 0, any fixed polytope K ′′N(ω′′) ⊂ 2Bn
2 ,

and any operator T ∈ L(Rn) with detT = 1, we have

P(A(α,K ′′N , T )) ≤ (c2α)n
2

, (9)
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In fact, it is sufficient to consider the sets A(α,K ′′N , T ) for a sufficiently
dense net in a suitable set of operators.

Step II. Discretization, ε-nets in spaces of operators
Recall that if B1 is a centrally symmetric convex body in Rn, and A ⊂ Rn

and δ > 0 then N is a δ-net in A with respect to B1 if N ⊂ A and for every
x ∈ A there is z ∈ N such that x − z ∈ δB1. The following lemma is
standard.

Lemma 5 Let B1 ⊂ B2 be two centrally symmetric convex bodies in Rn.
For every subset A ⊂ B2 there exists a 1-net N in A with respect to B1 with
cardinality |N | ≤ 3n vol B2/ vol B1.

Proof. Let N = {x1, . . . , xM} be a maximal subset of A satisfying xi−xj 6∈
B1 for all i 6= j. The maximality implies that it is a 1-net in A. Consider the
set
⋃M
i=1(xi+

1
2
B1) ⊂ (1+ 1

2
)B2, and note that the sets forming the union are

mutually disjoint translates of 1
2
B1. Thus M(1

2
)n vol B1 ≤ (3

2
)n vol B2. 2

We shall identify, in the canonical way, operators from L(Rn) with n× n
matrices, considered as elements of Rn2

. In particular, this allows to consider
the n2-dimensional volume of any Borel set of operators. We shall consider
two sets of operators (Bn

2 and Bn
1 below denote the unit ball in `n2 and `n1 ,

respectively):

Bn
op = {T ∈ L(Rn) | ‖T : Bn

2 → Bn
2 ‖ ≤ 1},

and, for a centrally symmetric convex body B ⊂ Rn,

Bn
op,B = {T ∈ L(Rn) | ‖T : Bn

1 → B‖ ≤ 1}.

Lemma 6 We have vol Bn
op,B = (vol B)n and vol Bn

op ≥ (c1/n)n
2/2, where

c1 > 0 is a universal constant.

The ball Bn
op,B has a very simple structure: it is just the Cartesian product

of n copies of B, B× . . .×B. So the formula for the first volume is obvious.
The remaining lower bound is by now standard and based on a fundamental
upper bound for the norm of a Gaussian matrix. For sake of completeness
we briefly describe it – following [MT2] – at the end of this section, and we
give a short elementary proof

We formulate the conclusion of Step II in the next corollary.
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Corollary 7 Let B ⊂ Rn be a centrally symmetric convex body and let t > 0
be such that tBn

2 ⊂ B. Every subset A ⊂ Bn
op,B admits a t-net N , with respect

to the operator norm on `n2 with card (N ) ≤ (C/t)n
2
(vol B/ vol Bn

2 )n, where
C is an absolute constant.

This follows immediately from Lemmas 6 and 5, by observing that the con-
dition tBn

2 ⊂ B implies tBn
op ⊂ Bn

op,B (in turn, this observation follows by
direct checking on appropriate norms of operators).

Step III. Perturbation argument, the end of the proof
Fix any ω′′ ∈ Ω′′0 and denote K ′′N(ω′′) by K̃N (recall that K̃N ⊂ 2Bn

2 ).

For any α > 0 consider the set A(α, K̃N) of all ω′ ∈ Ω′0 such that there

exists T ∈ L(Rn), with detT = 1 such that ‖T : K ′N(ω′) → K̃N‖ ≤ α
√
n.

This is our “ultimately bad” set. Any polytope K ′N associated with this set

admits operators of small operator norms from K ′N to K̃N . It is clear that
we need to remove this set from our considerations.

We have
A(α, K̃N) =

⋃
T

A(α, K̃N , T ), (10)

where the union runs over all T ∈ L(Rn) with detT = 1.

Lemma 8 For sufficiently small α > 0 one has, for every n ≥ 1 , P(A(α, K̃N)) ≤
2−n

2
.

Proof. LetN be an α-net with minimal cardinality in the set of all operators
T ∈ L(Rn), with detT = 1 such that ‖T : Bn

1 → K̃N‖ ≤ α
√
n, with respect

to the operator norm on `n2 . By Corollary 7, |N | ≤ Cn2

1 , where C1 > 1 is a
universal constant.

We are going to prove that

A(α, K̃N) ⊂
⋃
T∈N

A(3α, K̃N , T ). (11)

Having proved this, by (9) we get

P(
⋃
T∈N

A(3α, K̃N , T )) ≤ Cn2

1 (3c2α)n
2

.

In turn, for sufficiently small α > 0 this is bounded above by (1/2)n
2
, con-

cluding the proof.
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Comments before proving (11). This is the second crucial point of the
argument. The set defined in (10) is described by a certain condition satified
for all operators T . By comparison, in (11) we consider only a subset of
operators T , but this is possible because we weaken the appropriate condition
(from ≤ α

√
n to ≤ 3α

√
n)

Now we prove (11). Fix ω′ ∈ A(α, K̃N). Let T be an operator with

detT = 1 such that ‖T : K ′N(ω′) → K̃N‖ ≤ α
√
n. Since K ′N contains the

ball Bn
1 then T ∈ (α

√
n)Bn

op,K̃N
.

Pick T0 ∈ N with ‖T − T0 : Bn
2 → Bn

2 ‖ ≤ α. Since

n−1/2Bn
2 ⊂ Bn

1 ⊂ K ′N(ω′) and K̃N ⊂ 2Bn
2 ,

we get

‖T0 : K ′N(ω′)→ K̃N‖ ≤ ‖T : K ′N(ω′)→ K̃N‖+ ‖T0 − T : K ′N(ω′)→ K̃N‖
≤ α

√
n+ 2

√
n‖T0 − T : Bn

2 → Bn
2 ‖ ≤ 3α

√
n.

Thus ω′ ∈ A(3α, K̃N , T0), with T0 ∈ N . 2

Proof of Theorem 2 Fix α > 0 satisfying Lemma 8. Denote by Q the
set of all pairs (ω′, ω′′) ∈ Ω′0⊗Ω′′0 such that for all T ∈ L(Rn) with detT = 1
one has ‖T : K ′N(ω′)→ K ′′N(ω′′)‖ > α

√
n. Set T = {(ω′, ω′′) | (ω′′, ω′) ∈ Q}.

Using the Fubini theorem for the complement of Q, by (7) and Lemma 8, we
get

P× P(Q) = P× P(T ) ≥ 1−N exp(−cn)− 2−n
2

.

Hence P× P(Q∩ T ) ≥ 1− 2N exp(−cn) + 2−n
2
).

To complete the proof note that d(K ′N(ω′), K ′′N(ω′′)) > α2n for (ω′, ω′′) ∈
Q∩T . Indeed, let T ∈ L(Rn) be an arbitrary isomorphism. By multiplying T
by a suitable constant we may assume that detT = 1 and detT−1 = 1. Hence
each of the norms ‖T : K ′N(ω′)→ K ′′N(ω′′)‖ and ‖T−1 : K ′′N(ω′′)→ K ′N(ω′)‖
is larger than α

√
n. 2

At the end of the section we give the proof of Lemma 6.
Proof of Lemma 6 The argument for the lower bound for the volume of
Bn
op is based on well known properties of Gaussian matrices. Let G(ω) be an

n×n Gaussian matrix whose columns are independent normalized Gaussian
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vectors in Rn. First recall the tail behaviour of a Gaussian matrix: for every
a > 0 we have

P{ω | ‖G(ω) : `n2 → `n2‖ ≥ a} ≤ (6
√

2e−a
2/16)n. (12)

(Although these are definitely not the best constants, but they are rather
easy to prove and hence convenient for us to use (see e.g., [MT2] for the
proof based on the same ingredients we used here).

Now observe that n−1/2G is a normalized Gaussian vector in Rn2
. There-

fore, applying Fact 1 for the set B = 8n−1/2Bn
op ⊂ Rn2

we get(
vol B/ vol Bn2

2

)
≥ (n/82e)n

2/2P
{
‖G : `n2 → `n2‖ ≤ 8

}
.

By (12), probability of the set above is larger than or equal to 1/2, hence,
using the formula for the volume vol Bn2

2 we get

vol Bn
op ≥ (1/2)(n/82e)n

2/2 vol Bn
2 ≥ (c′/n)n

2/2,

where c′ > 0 is a universal constant.

Finally, for the convenience of a non-specialist reader, we sketch the ar-
gument for (12).

Fix an arbitrary a′ > 0. Since matrices G and GU have the same dis-
tribution for any fixed orthogonal matrix U , then by (2) we have, for every
x ∈ Sn−1,

P{‖G(ω)x‖2 > a′} = P{‖G(ω)e1‖2 > a′} ≤ (
√

2e−a
′2/4)n.

By Lemma 5, the unit sphere Sn−1 admits an 1/2-net N with respect to
‖ · ‖2 with cardinality not greater than 6n. Set A = {ω ∈ Ω | ‖G(ω)x‖2 ≤
a′ for all x ∈ N}. Then P(A) ≥ 1− (6

√
2e−a

′2/4)n. An easy approximation
argument shows that ‖G(ω) : `n2 → `n2‖ ≤ 2a′ for every ω ∈ A. Thus the
conclusion follows from the estimate for P(A), setting a′ = a/2. 2

2 Banach–Mazur distances between random

projections of convex bodies

Gluskin’s random polytopes KN in Rn investigated in the previous section
are obtained as linear images of the higher dimensional cross-polytope BN ′

1
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in RN ′
, where N ′ = n+N = 2n. Indeed, (6) defines KN via certain matrix,

a part of which is a random Gaussian matrix. This matrix can be actually
made into a full n × N ′ random Gaussian matrix, although the proofs are
more technically complicated. Some results of this type were also proved
by various authors for Gaussian projections of the balls BN ′

p for 1 < p < 2.
This in turn leads to similar result about Banach-Mazur distance between
random orthogonal projections PH(BN ′

1 ) or PH(BN ′
p ) (One should however

note that passing from Gaussian results to analogous results for projections
is not purely formal and sometimes a rather delicate matter.)

It is very interesting that similar results are true for random projections
of an arbitrary centrally symmetric convex body K ⊂ RN . As an example
of just one such result, the diameter of a family of random n-dimensional
orthogonal projections of such a body K ⊂ RN (for any 1 ≤ n < N was
studied in [MT1] and it was shown that this diameter is larger than or equal
to the square of the Euclidean distances of random k-dimensional projections
of the body (where k = (1/2− ε)n, for any ε > 0). More precisely,

Theorem 9 For 1 ≤ n ≤ N denote by GN,n the Grassmann manifold of
n-dimensional subspaces of RN with the normalized Haar measure µN,n; and
for a subspace H ⊂ RN , by PH denote the orthogonal projection onto H. Let
K be a symmetric convex body in RN such that the Euclidean unit ball BN

2

is the ellipsoid of minimal volume containing K, let 0 < λ < 1 and assume
that n ≤ λN . Then∫

GN,n

∫
GN,n

d (PH1(K), PH2(K)) dµN,n(H1) dµN,n(H2)

≥ c

(∫
GN,m

d (PH(K), Bm
2 ) dµN,m(H)

)2

, (13)

where c = c(λ) > 0 depends on λ only, and m = [2n/5], say.

In particular this shows that (up to the drop in the dimension) the
Banach–Mazur distance between random n-dimensional projections of an
arbitrary symmetric convex body K ⊂ Rn is of maximal order allowed by
a given Euclidean distance of random projections of K of a slightly smaller
dimension. We should also observe that the drop of dimension is necessary
and the formula is in a certain sense optimal.

10



Most of results in this and related directions proved before 2000 are de-
scribed in the survey paper [MT2] and references therein. Theorem 9 is a
main result of [MT1]; further developments and applications of the theory
can be found in later papers by various authors.
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