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1. INTRODUCTION

The main purpose of the present paper is to give a new presentation
as well as new applications of the results contained in Grothendieck’s
paper [17]. In this remarkable paper Grothendieck outlined the theory
of tensor products of Banach spaces. The climax of this paper was a theorem
called by Grothendieck “the fundamental theorem of the metric theory
of tensor products”. This theorem is equivalent to the following assertion:

Let {a;;}i ;1 be a finite matrix of real numbers such that

n
1 Z ai,,-tisj-

1,f=1

<1

whenever {t;| <1, |s;] <1. Then for every set of unit vectors {w:}i
and {y;};—, in a Hilbert space

lzai,i(mﬁ ¥5) ; <K,
€7

where K is an absolute constant and (-,:) denotes the inner product
in the Hilbert space.

This inequality, as well as many of its applications, are meaningful
and interesting also outside the framework of tensor product theory.
Though the theory of tensor products constructed in Grothendieck’s
paper has its intrisic beauty we feel that the results of Grothendieck
and their corollaries can be more clearly presented without the use of
tensor products. The paper of Grothendieck is quite hard to read (*) and
its results are not generally known even to experts in Banach space theory.
In fact, by using these results some problems which were posed by various
authors in the last decade can be easily solved. All these considerations
persuaded us to write this paper in its present form. We do not use here
the notion of tensor products.

(*) An elegant exposition of the introductory part of [17] can be found in [56].
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In Section 2 we present a proof of the inequality mentioned above
and of its immediate consequences. The proof we present is just a refor-
mation of the argument of Grothendieck. The proof is elementary and
no knowledge of functional analysis is needed for its understanding.

Section 3 is devoted to functional amnalytic preliminaries. In parti-
cular, we introduce in it the class of % -spaces, 1 < p < oo. These are
Banach spaces whose finite-dimensional subspaces are the “game?” ag
those of an L,(u) space for some measure . These spaces are introduced
since most of the results proved in the present paper depend not on the
whole Banach space but rather on the structure of its finite-dimensional
subspaces. We present also the notion of p-absolutely summing operators
(1 <p < oo) which is due to Pietsch [51] (ef. Saphar [52], [58] for P =2)
and which for p =1 goes back to Grothendieck. The applications of the
inequality of Section 2 to the theory of Banach spaces are made through
the use of this notion of p absolutely swmming operators. This is done
in Section 4. We prove there that every operator from an Z,-space to
2 Hilbert space is 1-absolutely summing and that this property charac-
terizes, in a certain sense, %, and Hilbert spaces respectively. As a corollary
it follows that the inequality of Section 2 (which was stated above) charac-
terizes Banach spaces which are isomorphic to Hilbert spaces. It also
is shown in Section 4 that every operator from an £, space to an %,
space, 1 <p <2, is 2-absolutely summing.

The results of Section 4 are used in Section 5 for obtaining factori-
zation theorems for certain classes of operators. The main result here
is that every linear operator 7' from an Z,-space X into an Z-space Y
where p > 2 > can be represented as T = T,T,, where T, is a linear
operator from X into a snitable Hilbert space H and T, is a linear operator
from H into ¥.

Section. 6 is. devoted to various applications of the preceding results.
One application iy the following: In the spaces I; and ¢, all normalized
unconditional bases are equivalent to the usual unit basis. The space
I, (resp. ¢,) is the only complemented subspace of an %, (resp. %) space
‘which hag an unconditional bagis. A qualitative version of this result gives
-anew connection between the projection and symmetry congtants of a finite-
-dimensional space X and its distance from the space Iy, (with # = dimX).

The results in Sections 4 and 5 concerning operators defined on
Zp-spaces provide a tool for proving that certain subspaces of ZLy-spaces
are not complemented subspaces. We show in Section 6 how to use this
‘ool in order to give a new proof to the result of D. J. Newman that the
Hardy space H, is not a complemented subspace of Ly (u) (where u is the
Haar measure on the circle).

Another application which is presented in Section 6 is Grothendieck’s
<characterization of a Hilbert space- as the only Banach space which is
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isomorphic to a subspace of an #,-space and fo a quotient space of an
Z-space. We also present in this section several characterizations, due
essentially to Grothendieck, of Hilbert-Schmidt and trace-class operators
in a Hilbert space.

Section 7 is devoted to a study of subspaces of L, (p)-spaces. This
study eclarifies somewhat the relation between general &,-spaces and
Ly(p)-spaces. We show in particular that every Z,-space, 1 < p < oo,
is isomorphic to a complemented subspace of an L, (u)-space for a suitable
measure u. Examples, given in Section 8, show that this is no longer
true if p = 1 or oo and that unless p = 2 the class of Zp-spaces properly
includes the class of spaces isomorphic to L,(u)-spaces. In Section 7 it is
also shown that by combining known results it is now possible to give
a complete solution to the problem of the linear dimension of Ly (u)-spaces
(ef. Banach [2]).

The last section contains, besides the examples mentioned above,
some open problems and various additional remarks and results. The
main rvesult in this section is the proof of the existence of a “universal”
non-weakly compact operator.

Notation and terminology are given in Section 3. Let us only mention
here that unless stated otherwise we consider only spaces over the reals
though all the results and proofs carry over to the complex case.

Acknowledgment. The authors would like to express their grati-
tude to M. I. Kadec who turned their attention to some of the problems
discussed here*and to C. Bessaga for valuable discussions during the
preparation of this paper.

2. THE BASIC INEQUALITY

In this section we present the inequalities which form the basis
of most of the proofs in the following sections. These inequalities are
of interest in themselves and may be of use also to mathematicians who
are not working in Banach space theory.

Let 8 = 8" = {zeE"; ||z|| = 1} denote the (n—1)-dimensional sphere
in the n-dimensional real Buclidean space E = E" Let m be the rotation
invariant Borel measure on S normalized so that m(8) = 1. Let

3
(,y) = D'y’
=
denote the usual inner product of the vectors x = (2',...,2™ and
¥y =(y*,...,y") in B". For realtlet signi = ¢/|t]if ¢ % 0 and sign0 = 0.
LEMMA 2.1. Let @, y<S™; then

2
(2.1) fsign(m, w)sign(y, w)dm(u) = 1— —0(z, ),
5/” i
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where 6 = 0(x, y) is the u%ique number satisfying cos6 = (x,y) and 0 < 0
< = (i.e. 0 s the angle between @ and y).

Proof. We choose the basis in E" in such a way that # = (1, 0, ..., 0)
and y = (cosf,sin6,0,0,...,0). Let g be a bounded measurable func-
tion on 8" Using polar coordinates ¢ = (g1, @, ..., gn_y) We express

the integral f g(u)dm(u) by the (n—1)-dimensional Lebesgue integral.
o
‘We have the relation

Jowamw) = 18" [ g(u(p))J (¢)d(e),
i -1
where
N1
u(p) = (W(g), w(g), ..., w"(g)), wi(p) =[] sing,,
i=1
n—1
w(g) = eos%_ln sing; for k=2,3,...,n—1,
i=k
w"(p) = co8g_s,
I'"' ={p:0<p, <2m; 0< < for £ =2,3,..., n—1},
n—1
I(p) = [ ] (sing)*,
= n—1 m
18" = [ J(p)dlp) = 2= [] [ (sing)*dg;.
m—1 =2 0 .
Let h(u) = (w, w)(y, u) = u'(u'cos 6+ u?sinf). Then

n—1
h(u(g)) = [H sin%]zsinqol(sinqalcos 6+ cosg, sin 6).
=2

Hence, for g(u) = sign[h(w)], we get

g(’“’(?’)) = sign [sing, sin (¢, 4 6)] = f(gu, 0).
Clearly, f(p., 6) is equal to +1 on the intervals (0; ©—0) and (r;

2n—0), and is equal to —1 on the intervals (r—0;m) and (2w — 0; 2m).
Thus

Jowam) = 187 [ f(g,, 0)T(p)d(g)
i -1
e n—-1 7
= 8" [ flos, O [ | [ (singy=" do;
0 i=2 0

= @07 [ flgy, 0)dp, = 1— 20/

This completes the proof.
‘We are now ready for the proof of the main result:
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THEOREM 2.1. Let {a;;}i5m15, v be a real-valued matriz and let M
be a positive number such that

N
' 2 a,.i,,-fis,-} < M

for every real {t.}1_1 and {s;}f. -1 satisfying t;] <1 and |s;) < 1. Then for
arbitrary vectors {m}r., and {W¥Ly in a real inner product space H

(2.4)

(2.5) 1 2 @405, 43) | < Ko Msup o sup ),
=1 i
where Kq is the Grothendieck wniversal constant (Hg
L a2
—e %) /2).
Proof. Let us first make some observations.
1° If a matrix {a;;} satisties (2.4), then for arbltra.ry real numbers
0, and ¢ (z,] =1,2,...,N) the matrix {ai;} with ai; = cia; ;¢ for
i,j=1,...,N sa,tlsﬁes (9 4) with the constant

< sinhz/2 = (™ —

M’ = Msuplejlsup |e].
i )

2° Since every 2N vectors in H belong to some 2N-dimensional
linear subspace of H which is isometric to B*", we may assume without
loss of generality that {w} , and {y,}, belong to B*V. From observation
1° and a standard homogeneity argument it follows that we may assume

also that |ln| = |lys] = 1 for every ¢ and j.
For an a.rbltrary eS8 we define ti(u) = sign(u, x;) and s;(w)
= sign(u, ), 4,j =1, ..., N. By (24)

N
—M < D agtu)s(u) <M for  weS,
1i=1 -

Hence by integrating over 82 with respect to the normalized rotation
invariant measure we get, by formula (2.1),

N
——:—M< Zai.j(%_e(mi: %‘)) <

1,5=1

M.

w| A

Let us pub aff} = a;;(r/2— 0(w;, y;)} for 4,5 =1,2,..., N. Tt fol-
lows easily from observation 1° that the matrix (af)) satisfies (2.4) if we
replace M by =M /2. Hence, by repeating the averaging argument we get

N N
2 x - 2 o \2
fe e Sl o) - Sl v <[z

4,j=1 1,f=1
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In this manner we obtain inductively

u = " w\"
Z @; 5 ('2— - 6(9777 @/1)) < (5‘) -ﬂ[7

%=1

2.6) — (—;E—)HM <

Since

. ki3
(@, y5) = cosb(wy, y;) = sin (-2— — 0w, ?/7))

e - 2n41
= Z (—1)n(‘2“— 0 (w:, .1/1)) [(@n+1),

n=0

inequality (2.6) implies that

~ had on+1 1 =

' . T

’ § agg (g, y:) | < M E (E) ——— = Msmh?
1,7=1 N=(

(Zn--1)!
and this concludes the proof of the theorem.
COROLLARY 1. Let {as;} be a real-valued matriz for which (2.4) holds.
Then for arbitrary vectors {m}i., in an inmer product space H

N N
@.7) c D X asge]| < Kom sup o
= tiE

Proof. Choose for j =1,..., N vectors y;eH such that [y =1
and

N N
(2 @i, %, ?/7) = HZ 41, %4 !
i=1 =1

By using these «; and y, in (2.5) we get (2.7).

COROLLARY 2. Let {ts5}is10,.. be an infinite veal matriz and let M

be a positive constant such that .

N
(2.8) [Zai,,t{stM for Wl <1, <1, 4,5, N=1,2,..

1,7=1

Then for an arbitrary veal matriz {1} such that for some ¢ >0

(2.9) (Z wi_i)m <O for i=1,2,..
%

the following inequalities hold:

2 (Zk: (2 mrp,iaz‘,-/)‘z)]‘/g < KgOM,
7 7

(2.10)
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“general Littlewood inequality”, and

(; (72 | Donaass|' ) < oo,

“general Orlicz inequality.”
Proof. Observe first that (2.8) implies that

(2.11)

Dlal <M (j=1,2,..).
1

Since, by (2.9), |#sx < C for every ¢ and %, the series D tria;; is
absolutely convergent for %,j = 1,2, ... Therefore, since the l;smm; over
kand jin (2.10) and (2.11) have non-negative terms, it is enough to restrict
our attention to the case where {@,s} is & matrix with an arbitrary but
finite number of elements different from zero (we pass to the general
case by a standard limit procedure). Hence in the sequel we shall assume
that each of the sums appearing in (2.9), (2.10) or (2.11) has exactly &
terms.

Let @; = (@) denote the ¢-th column of the matrix {ors} (i=1, ...
...y N). We consider the »; as vectors in the N -dimensional Ruelidean
space E~. Then (2.9) means that llesll < € for every i, and thus (2.10)
is just a reformulation of (2.7).

Inequality (2.11) is an immediate consequence of (2.10). In fact, let
bj}k == ’ Zwk'iad’jf.

By the triangle inequality for the vectors by = (bis), j=1,.
N )

DARLRIAEHIUALS

Le. the expression in the left-hand side of (2.11) is not larger than the
expression in the left-hand side of (2.10).

Remark. If @, = 6f(=1 for i =% and =0 otherwise), (2.10)
reduces to the inequality

(Y e < xent.
<4

2

N,

This inequality (with a better constant, V3 instead of Kg) is due to Little-
wood [38] (see also [50], p. 39, and [49]). For the same choice of Tr,1
formula (2.11) reduces to the inequality

(S13a

) )"2 <KglM.
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This inequality was obtained by Orlicz in [42). As in the proof of Theorem
2.1, the inequalities of Littlewood and Orliez were obtained from (2.5)
by using an averaging procedure. It would be of some interest to know
the best possible value for Kg as well as the best constant in the in-
equalities of Littlewood and Orliez (i.e. inequalities (2.10) and (2.11) with
#y¢ = &). Grothendieck proves in [17] that Ko > =/2.

Let us finally note that if we consider also complex-valued matrices
{a) for which (2.4) holds, then (2.5) will be valid (in complex or real
Hilbert spaces) if K is replaced by 2K,. In order to see this we have
only to take the real and imaginary parts of the matrix {a,,} and to nse
inequality (2.7) which is equivalent to (2.5).



