Khinchine's Imequality

We consider functions $7_1, 7_2, ... on [0,1)$ defined by (+1 on [0,1/2)

$$r_1(\pm) = \begin{cases} +1 & \text{on } [0, \frac{1}{2}) \\ -1 & \text{on } [\frac{1}{2}, 1) \end{cases}$$

$$7_{2}(t) = \int_{0}^{+1} on \left[0, \frac{1}{4}\right) \cup \left[\frac{1}{2}, \frac{3}{4}\right)$$

$$-1 \quad on \left[\frac{1}{4}, \frac{1}{2}\right) \cup \left[\frac{3}{4}, 1\right) \quad efc$$

for the nth function we divide [0,1] on 2^n subintervals, each of length 2^{-n} , and define $r_n(t)$ to be equal +1 or -1 on successive subintervals.

We shall consider products of Rademacher functions:

hons:

$$\int_{0}^{1} r_{1}(t)^{i_{1}} r_{2}(t)^{i_{2}} r_{n}(t)^{i_{n}} dt$$

This = 1 if all powers i_1, i_2, \dots, i_n are even otherwise = 0

Consider $L_p = L_p(0,1)$ with Lebesgue measure $\|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$ Next page from the book by Ryan

37

where $\|c\|_2$ is the ℓ_2 -norm of the vector $c = (c_1, \ldots, c_n, 0, 0, \ldots)$. It is a surprising fact that the L_p -norm of $\sum_{j=1}^n c_j r_j$ is equivalent to the ℓ_2 -norm of the vector c for every value of p.

Theorem 2.24 (Khinchine's Inequality). Let r, be the Rademacher functions. For each $p \in [1,\infty)$ there are positive constants A_p and B_p such

 $A_p \|\mathbf{c}\|_2 \le \left\| \sum_{j=1}^n \mathbf{c}_j r_j \right\|_{\mathbf{n}} \le B_p \|\mathbf{c}\|_2$

for every finite sequence $c = (c_1, \ldots, c_n)$ of scalars.

Proof. We have already seen that $\|\sum_{j=1}^n c_j r_j\|_2 = \|c\|_2$ and so we may take $A_2 = B_2 = 1$. Now the norm of $L_p[0,1]$ is an increasing function of p and so it suffices to prove the B_p inequality for p > 2 and the A_p inequality for p < 2.

Step 1: The B_p inequality for p > 2 and $K = \mathbb{R}$.

By the monotonicity of the L_p -norms, it is enough to prove the inequality when p is an even positive integer. Accordingly, let p = 2m. Using the Multinomial Theorem, we have

$$\begin{split} \left\| \sum_{j=1}^{n} c_{j} r_{j} \right\|_{p}^{p} &= \int_{0}^{1} \left(\sum_{j=1}^{n} c_{j} r_{j}(t) \right)^{2m} dt \\ &= \sum_{k_{1} + \dots + k_{n} = 2m} \frac{(2m)!}{k_{1}! \dots k_{n}!} c_{1}^{k_{1}} \dots c_{n}^{k_{n}} \int_{0}^{1} r_{1}^{k_{1}}(t) \dots r_{n}^{k_{n}}(t) dt \,. \end{split}$$

The integral is zero unless all the k_j are even, say $k_j = 2m_j$. Now $k_1 + \cdots +$ $k_n = 2m$ if and only if $m_1 + \cdots + m_n = m$ and so

$$\begin{split} \left\| \sum_{j=1}^{n} c_{j} r_{j} \right\|_{p}^{p} &= \sum_{m_{1} + \dots + m_{n} = m} \frac{(2m)!}{(2m_{1})! \dots (2m_{n})!} c_{1}^{2m_{1}} \dots c_{n}^{2m_{n}} \\ &\leq (2m)! \sum_{m_{1} + \dots + m_{n} = m} (c_{1}^{2})_{1}^{m} \dots (c_{n}^{2})_{n}^{m} \leq (2m)! \left(\sum_{j=1}^{n} c_{j}^{2} \right)^{m}. \end{split}$$

Therefore

$$\left\| \sum_{j=1}^n c_j r_j \right\|_p \le (p!)^{1/p} \|c\|_2 \,,$$

when p is an even integer.

Step 2: The B_p inequality for p > 2 and K = C. If $c_1 = a_1 + ib_1$ are complex numbers, then

$$\left\| \sum_{j=1}^{n} c_{j} r_{j} \right\|_{p} \leq \left\| \sum_{j=1}^{n} a_{j} r_{j} \right\|_{p} + \left\| \sum_{j=1}^{n} b_{j} r_{j} \right\|_{p} \leq B_{p}(\|a\|_{2} + \|b\|_{2})$$
$$< \sqrt{2} B_{p}(\|a\|_{2}^{2} + \|b\|_{2}^{2})^{1/2} = \sqrt{2} B_{p} \|c\|_{2}.$$

Step 3: The A_p inequality for $1 \le p < 2$.

By the monotonicity of the L_p -norms, it suffices to prove the inequality in the case p = 1. Using Hölder's inequality with the conjugate exponents 3/2and 3 and the B_p inequality for p=4, we have

$$\begin{aligned} \|c\|_{2}^{2} &= \int_{0}^{1} \left| \sum_{j=1}^{n} c_{j} r_{j} \right|^{2} dt = \int_{0}^{1} \left| \sum_{j=1}^{n} c_{j} r_{j} \right|^{2/3} \left| \sum_{j=1}^{n} c_{j} r_{j} \right|^{4/3} dt \\ &\leq \left(\int_{0}^{1} \left| \sum_{j=1}^{n} c_{j} r_{j} \right| dt \right)^{2/3} \left(\int_{0}^{1} \left| \sum_{j=1}^{n} c_{j} r_{j} \right|^{4} dt \right)^{1/3} \\ &\leq \left\| \sum_{j=1}^{n} c_{j} r_{j} \right\|_{1}^{2/3} B_{4}^{4/3} \|c\|_{2}^{4/3} .\end{aligned}$$

It follows that

$$\left\| \sum_{j=1}^n c_j r_j \right\|_1 \ge B_4^{-2} \|c\|_2$$

and so we have proved the A_1 inequality with $A_1 = B_A^{-2}$.

We should point out that the proof we have given here does not by any means give the best values for the constants A_p and B_p .

Khinchine's inequality shows that the closed subspace of $L_p[0,1]$ generated by the Rademacher functions is isomorphic to ℓ_2 . For values of p greater than 1 we can say a little more about this subspace:

Theorem 2.25. Let $1 \leq p < \infty$. The closed subspace R_p of $L_p[0,1]$ generated by the Rademacher functions is isomorphic to ℓ_2 . If p>1 then R_p is complemented in $L_n[0,1]$.

Proof. It follows from Khinchine's inequality that the mapping $\sum_{j=1}^{n} c_j e_j \mapsto$ $\sum_{j=1}^{n} c_{j} r_{j}$ extends to an isomorphism from ℓ_{2} onto R_{p} .

Now suppose that $p \geq 2$. Then $L_p[0,1] \subset L_2[0,1]$ and so, for every f in $L_p[0,1]$, the "Rademacher coefficients",

$$\langle f, r_n \rangle = \int_0^1 f(t) r_n(t) dt,$$

of f are square summable. We claim that the required projection of $L_p[0,1]$ onto R_p is given by the formula

$$P_p f = \sum_{n=1}^{\infty} \langle f, r_n \rangle r_n .$$

First, we use the Cauchy criterion to show that this series converges in $L_p[0,1]$. We have