Solutions of Additional Exercises.

Problem 1. Solve Problem 2 from Homework Assignment # 5 with the condition " $\mu\{|f| > t\} \le 1/t$ for every t > 1" instead of " $\mu\{|f| > t\} \le 1/t^2$ for every t > 1."

Solution. Nothing can be said about integrability of f. As in Problem 2, f can be integrable (just take f(x) = 0 for every x), but one can construct an example of non-integrable functions. Indeed, let E = [0, 1] and μ is the Lebesgue measure (then $\mu(E) < \infty$). Let f(x) = 1/x for x > 0 and f(0) = 0. Then

$$\mu(\{x \in E \mid |f(x)| > t\}) = \mu((0, 1/t)) = 1/t,$$

but

$$\int_E f \ d\mu = \int_0^1 t^{-1} \ dt = \infty.$$

Of course the condition " $\mu(E) < \infty$ " is not important: if one can construct an example with $\mu(E) < \infty$ and a function f then the same example is easily adjusted for the case of infinite measure – just fix $a \notin E$ and consider $F = E \cup \{a\}$ with measure ν , which is the same as μ on measurable subsets of E and which is infinity at $\{a\}$. Extend the function f from E to F by defining f(a) = 0. Clearly, $\nu(F) = \infty$ and

$$\int_E f \ d\mu = \int_F f \ d\nu.$$

Problem 2. Let X = (X, S) be a measurable space, μ and ν be totally finite measures on X such that $\nu \ll \mu$. Let $\lambda = \mu + \nu$ and $f = \frac{d\nu}{d\lambda}$. Show that $0 \leq f \leq 1 \lambda$ -a.e. and that $0 \leq f < 1 \mu$ -a.e. **Solution.** Since μ and ν are totally finite, f is integrable with respect to all measures. We have

$$\nu(E) = \int_E f \ d\lambda = \int_E f \ d\nu + \int_E f \ d\mu$$

Let $E = \{f < 0\} \in S$. Then $0 \le \nu(E) = \int_E f \ d\lambda \le 0$. Theorem 5.3.7 implies that $\lambda(E) = 0$. Let $A = \{f \ge 1\} \in S$. Then

$$\nu(A) = \int_{A} f \, d\nu + \int_{A} f \, d\mu \ge \int_{A} 1 \, d\nu + \int_{A} 1 \, d\mu = \nu(A) + \mu(A) \ge \nu(A).$$

Since ν is finite, it shows that $\mu(A) = 0$. Thus $0 \le f < 1 \mu$ -a.e.

Let $B = \{f > 1\} \in S$. Then $A \subset B$, so $\mu(B) = 0$. Thus

$$0 = \nu(B) - \nu(B) = \int_B f \, d\mu + \int_B f \, d\nu - \int_B 1 \, d\nu = \int_B (f - 1) \, d\nu.$$

Again, Theorem 5.3.7 implies that $\nu(B) = 0$. Therefore $\lambda(B) = 0$, which means $0 \le f \le 1$ λ -a.e. \Box

Problem 3. Let X = (X, S) be a measurable space, μ and ν be totally σ -finite measures on X such that $\nu \ll \mu$ and $\mu \ll \nu$. Let $\lambda = \mu + \nu$. Show that

$$\frac{d\nu}{d\mu} \frac{d\mu}{d\nu} = 1$$
 λ - a.e.

Solution. Denote $f = \frac{d\nu}{d\mu}$, $g = \frac{d\mu}{d\nu}$. First we assume that μ and ν are totally finite measures on X. Then by Corollary 6.5.2 for every $E \in S$ we have

$$\nu(E) = \int_E f \ d\mu = \int_E fg \ d\nu.$$

Thus, for every $E \in S$

$$0 = \nu(E) - \nu(E) = \int_{E} (1 - fg) \, d\nu.$$

Since measures are finite, all functions under consideration are integrable. Thus, by Lemma 5.3.8, $fg = 1 \nu$ -a.e. Similarly, $fg = 1 \mu$ -a.e. It implies $fg = 1 \lambda$ -a.e.

Now, in general, there exist two sequences of measurable sets $\{E_i\}_{i\geq 1}$ and $\{F_i\}_{i\geq 1}$ such that

$$X = \bigcup_{i \ge 1} E_i = \bigcup_{i \ge 1} F_i \quad \text{and for every } i \ge 1 \quad \mu(E_i) < \infty, \ \nu(F_i) < \infty.$$

Thus

$$X = \bigcup_{i,j \ge 1} (E_i \cap F_j) \quad \text{and for every } i, j \ge 1 \quad \mu(E_i \cap F_j) < \infty, \quad \nu(E_i \cap F_j) < \infty.$$

Applying the first part separately for each $E_i \cap F_j$ we obtain the result.