Solutions of Assignment # 5.

Problem 1. Let λ denote the Lebesgue measure on \mathbb{R} . Is it true that for every sequence of bounded integrable functions $\{f_n\}_{n\geq 1}$ from A to \mathbb{R} one has

$$\int_{A} \liminf_{n \to \infty} f_n \ d\lambda \le \liminf_{n \to \infty} \int_{A} f_n \ d\lambda \ ,$$

where

a. A = [0, 1]?

b. $A = \mathbb{R}$ and the sequence is uniformly bounded?

Solution.

a. No. Consider functions f_n defined by

$$f_n(x) = \begin{cases} -n, & x \in (0, 1/n) \\ 0, & \text{otherwise} \end{cases}$$

Clearly, f_n is bounded, integrable, and $\int_A f_n d\lambda = -1$ for every n. On the other hand for $f_n(x)$ tends to 0 for every $x \in [0,1]$. Thus

$$0 = \int_{A} \liminf_{n \to \infty} f_n \ d\lambda > \liminf_{n \to \infty} \int_{A} f_n \ d\lambda = -1.$$

b. No. Consider functions f_n defined by

$$f_n(x) = \begin{cases} -1/n, & x \in (n, 2n) \\ 0, & \text{otherwise} \end{cases}$$

Clearly, $|f_n|$ is bounded by 1 (so $\{f_n\}_n$ is uniformly bounded), integrable, and $\int_A f_n d\lambda = -1$ for every n. On the other hand for $f_n(x)$ tends to 0 for every $x \in \mathbb{R}$. Thus

$$0 = \int_{A} \liminf_{n \to \infty} f_n \ d\lambda > \liminf_{n \to \infty} \int_{A} f_n \ d\lambda = -1.$$

Problem 2. Let (X, S, μ) be a measure space, $E \in S$, $\mu(E) < \infty$. Let $f : E \to \mathbb{R}$ be a measurable function satisfying $\mu(\{x \in E \mid |f(x)| > t\}) \le 1/t^2$ for every t > 1. Is f integrable on E? Is the condition " $\mu(E) < \infty$ " important?

Solution.

a. Yes, f is integrable on E. Indeed, by the distribution formula we have

$$\int_{E} |f| \ d\mu = \int_{0}^{\infty} \mu\{|f| > t\} \ dt = \int_{0}^{2} \mu\{|f| > t\} \ dt + \int_{2}^{\infty} \mu\{|f| > t\} \ dt$$

$$\leq 2\mu\{|f| > 0\} + \int_{2}^{\infty} t^{-2} \ dt \leq 2\mu(E) + 1/2 < \infty.$$

b. Yes, the condition is important. Without this condition nothing can be said about integrability of f. Indeed, f can be integrable (just take f(x) = 0 for every $x \in E$), but can be non integrable as the following example shows. Let f(x) = 1 for every $x \in E$. Then for every t > 1,

$$\mu(\{x\in E\mid |f(x)|>t\})=\mu(\emptyset)=0,$$

but

$$\int_{E} |f| \ d\mu = \mu(E) = \infty.$$

Problem 3. Let (X, S, μ) be a measure space. Let $f: X \to \overline{\mathbb{R}}$ be a measurable function such that

$$\nu(E) = \int_{E} f \ d\mu$$

is defined for every $E \in S$. Describe a Hahn decomposition with respect to ν .

Solution. Consider $A = \{f \ge 0\}$ and $B = \{f < 0\}$. Clearly, $X = A \cup B$ and $A \cap B = \emptyset$. Since f is measurable, $B \in S$.

Let $E \in S$. Then $E \cap B \in S$ and $\nu(E) = \int_E f \ d\mu \leq 0$. It shows that B is negative.

Let $E \in S$. Then $E \cap A = E \setminus B \in S$ and $\nu(E) = \int_E f \ d\mu \ge 0$. It shows that A is positive.

Thus $X = A \cup B$ is a Hahn decomposition with respect to ν .