
Solutions of Assignment # 4.

Problem 1. Let X = (R, µ), where µ is the Lebesgue measure. Let f : X → R be continuous
a.e. (that is, µ({x | f is not continuous at x}) = 0). Show that f is Lebesgue measurable.

Solution. Denote A = {x | f is not continuous at x} and, given q ∈ R, Lq = {x | f(x) < q}.
Clearly, if x ∈ Lq ∩Ac, then, by continuity, there exists δ > 0 such that (x− δ, x+ δ) ∈ Lq. In other
words

Lq ∩ Ac ⊂ intLq

(the interior of Lq). Therefore,

Lq = (Lq ∩ Ac) ∪ (Lq ∩ A) = (intLq) ∪ (Lq ∩ A).

The first set (the interior of Lq) is open, and, hence, Borel. The second set is subset of a set of
measure zero and, thus, is Lebesgue measurable (as the Lebesgue measure is complete). Thus Lq is
Lebesgue measurable. Since q is arbitrary, we obtain that f is Lebesgue measurable. 2

Remark. Another way to solve this problem is to notice that f is continuous on Ac, so the preimage
of any open set is open in induced topology on Ac, which implies that the preimage of any open set
is Lebesgue measurable.

Problem 2. Show that for every Lebesgue measurable function f : R → R there exists a Borel
measurable function g : R → R such that f = g a.e. with respect to the Lebesgue measure.

Solution. As usual we denote the class of all Borel sets by B and the class of all Lebesgue
measurable sets by L. By results about the completion of a measure we know that every L ∈ L can
be presented as L = B ∪N , where B ∈ B, N ⊂ D for some D ∈ B with µ(D) = 0.

For every q ∈ Q we denote Lq = {x | f(x) < q}. Since f is Lebesgue measurable we have
Lq ∈ L. Hence it can be presented as Lq = Bq ∪Nq, where Bq ∈ B, Nq ⊂ Dq for some Dq ∈ B with
µ(Dq) = 0. Denote

M =
∪
q∈Q

Dq.

Since Q is countable we observe that M ∈ B and µ(M) = 0. We define a function g by

g(x) =

{
0, x ∈ M
f(x), x ∈ M c.

Clearly, f = g a.e. We show that g is Borel measurable. Let q ∈ Q, q ≤ 0. Then

{x | g(x) < q} = {x | f(x) < q} ∩M c = Lq ∩M c = (Bq ∪Nq) ∩M c = Bq ∩M c

is a Borel set (since Bq and M are, and since Nq ⊂ M). If q ∈ Q, q > 0 then

{x | g(x) < q} = {x | f(x) < q} ∪M = Lq ∪M = Bq ∪M

is a Borel set. By a theorem in class (and a remark after) it implies that g is a Borel measurable
function. 2

Remark. Another way to solve this problem is to define g as

g(x) = inf {q ∈ Q | x ∈ Bq}



if the infimum is finite and g(x) = 0 otherwise.

Problem 3. Let (X,S, µ) be a measure space such that µ(X) < ∞. Let {fn}n be a sequence of
measurable functions which is convergent in measure to a measurable function f . Show that {f2

n}n
is convergent in measure to f 2.

Solution. Fix ε > 0.
Given q ≥ 0 denote Lq = {x | |f(x)| > q}. Since f is measurable, Lq ∈ S. Clearly Lq ⊂ Lr if

q ≥ r, thus, by continuity and finiteness of µ we have

0 = µ(∅) = µ

(∩
k≥1

Lk

)
= lim

k→∞
µ(Lk).

Thus for every δ > 0 there exists kδ such that

µ(Lkδ) ≤ δ.

Since fn tends to f in measure, for every δ > 0 there exists N = N(δ) such that for every n ≥ N
one has

µ ({x | |fn(x)− f(x)| > kδ}) ≤ δ.

Since
{x | |fn(x) + f(x)| > 3kδ} ⊂ {x | |f(x)| > kδ} ∪ {x | |fn(x)− f(x)| > kδ},

it implies for n > N
µ ({x | |fn(x) + f(x)| > 3kδ}) ≤ 2δ.

Now note that

{x | |f 2
n(x)− f 2(x)| > ε} = {x | |fn(x)− f(x)| · |fn(x) + f(x)| > ε}

⊂ {x | |fn(x)− f(x)| > ε/(3kδ)} ∪ {x | |fn(x) + f(x)| > 3kδ}.

Since fn tends to f in measure, there exists M = M(ε, δ) such that for every n > M one has

µ ({x | |fn(x)− f(x)| > ε/(3kδ)}) ≤ δ.

Choosing N0 = max{N,M} we observe that for n > M

µ
(
{x | |f 2

n(x)− f2(x)| > ε}
)
≤ 3δ.

It shows that
lim
n→∞

µ
(
{x | |f 2

n(x)− f 2(x)| > ε}
)
= 0,

i.e., that f2
n tends to f2 in measure. 2


