Solutions of Assignment # 4.

Problem 1. Let X = (R, ), where p is the Lebesgue measure. Let f : X — R be continuous
a.e. (that is, u({x | f is not continuous at x}) = 0). Show that f is Lebesgue measurable.

Solution.  Denote A = {z| f is not continuous at x} and, given ¢ € R, L, = {z | f(z) < q}.
Clearly, if x € L, N A, then, by continuity, there exists § > 0 such that (z —d, 2+ ) € L,. In other
words

L,NA°C intL,

(the interior of L,). Therefore,
L,=(LyNnA)U(L,NA) = (intL,) U (L, N A).

The first set (the interior of L,) is open, and, hence, Borel. The second set is subset of a set of
measure zero and, thus, is Lebesgue measurable (as the Lebesgue measure is complete). Thus L, is
Lebesgue measurable. Since ¢ is arbitrary, we obtain that f is Lebesgue measurable. ]

Remark. Another way to solve this problem is to notice that f is continuous on A€, so the preimage
of any open set is open in induced topology on A¢, which implies that the preimage of any open set
is Lebesgue measurable.

Problem 2. Show that for every Lebesgue measurable function f : R — R there exists a Borel
measurable function ¢ : R — R such that f = g a.e. with respect to the Lebesgue measure.

Solution. As usual we denote the class of all Borel sets by B and the class of all Lebesgue
measurable sets by £. By results about the completion of a measure we know that every L € L can
be presented as L = BU N, where B € B, N C D for some D € B with u(D) = 0.

For every ¢ € Q we denote L, = {z | f(z) < ¢q}. Since f is Lebesgue measurable we have
L, € L. Hence it can be presented as L, = B, U N,, where B, € B, N, C D, for some D, € B with

u(D,) = 0. Denote
M =] D,

qeQ

Since Q is countable we observe that M € B and u(M) = 0. We define a function g by
0 re M
9(z) = { f’(:v), xr € M°.
Clearly, f = g a.e. We show that ¢ is Borel measurable. Let ¢ € Q, ¢ < 0. Then
{z | g(z)<q}=A{x | flz)<¢g}nNM‘=L,NM*=(B,UN,)NM*=B,NM°
is a Borel set (since B, and M are, and since N, C M). If ¢ € Q, ¢ > 0 then
(o] g@)<qt={v | f(x) <q}UM=L,UM =B,UM

is a Borel set. By a theorem in class (and a remark after) it implies that g is a Borel measurable
function. 0O

Remark. Another way to solve this problem is to define g as

glz) =inf{geQ | =€ By}



if the infimum is finite and g(z) = 0 otherwise.

Problem 3. Let (X, S, 1) be a measure space such that pu(X) < oco. Let {f,}, be a sequence of
measurable functions which is convergent in measure to a measurable function f. Show that {f2},
is convergent in measure to f2.

Solution. Fixe > 0.
Given ¢ > 0 denote L, = {z | |f(z)| > ¢}. Since f is measurable, L, € S. Clearly L, C L, if
q > r, thus, by continuity and finiteness of ;1 we have

0= pu(0) = p (ﬂ Lk) = lim pu(Ly).
k>1

Thus for every ¢ > 0 there exists ks such that
M(Lk(s) < 0.

Since f, tends to f in measure, for every > 0 there exists N = N(9) such that for every n > N
one has

p{z | |fulz) = f(2)] > ks}) < 0.
Since
{z [ [fale) + f(2)] > 3ks} C{x [ [f(2)] > ksyU{z | |fulz) = f(2)] > ks},
it implies for n > N
p{z | [fulz) + f(2)| > 3ks}) < 26.
Now note that
{e | [f2(@) = f2@)] > e} ={z | |fulx) = f(@)|-|[falz) + f(2)] > €}
CHz | [falx) = f(@)| > e/Bks)} Uz | [fulz) + f(z)] > 3ks}.

Since f, tends to f in measure, there exists M = M (e, d) such that for every n > M one has

p{z | [fulz) = f()] > /(Bks)}) < 0.

Choosing Ny = max{N, M} we observe that for n > M

p({z | 1falz) = ()] > e}) < 30

It shows that
Tim p({z | [fi(@) = f2(2)] > £}) =0,

i.e., that f2 tends to f? in measure. O



