Assignment # 5. Due March 23

Problem 1. Let λ denote the Lebesgue measure on \mathbb{R} . Is it true that for every sequence of bounded integrable functions $\{f_n\}_{n\geq 1}$ from A to \mathbb{R} one has

$$\int_{A} \liminf_{n \to \infty} f_n \ d\lambda \le \liminf_{n \to \infty} \int_{A} f_n \ d\lambda \ ,$$

where

a. A = [0, 1]?
b. A = R and the sequence is uniformly bounded?

Problem 2. Let (X, S, μ) be a measure space, $E \in S$, $\mu(E) < \infty$. Let $f: E \to \mathbb{R}$ be a measurable function satisfying $\mu\{x \in E \mid |f(x)| > t\} \le 1/t^2$ for every t > 1. Is f integrable? Is the condition " $\mu(E) < \infty$ " important?

Problem 3. Let (X, S, μ) be a measure space. Let $f : X \to \overline{\mathbb{R}}$ be a measurable function such that

$$\nu(E) = \int_E f \ d\mu$$

is defined for every $E \in S$. Describe a Hahn decomposition with respect to ν .