
Solutions of Midterm problems.

Problem 3. Is the condition “measure is finite” in the Egoroff Theorem necessary?

Solution. We show that the answer is negative. We consider R with the lebesgue measure
λ. Let fn be the characteristic function of the segment [n, n + 1] and f be identically equal to 0.
Then, clearly, for every (fixed) x we have fn(x) → f(x) = 0. Now we show that {fn} does not
converge almost uniformly. Assume that {fn} converges almost uniformly to a function g. Since
almost uniform convergence implies pointwise a.e. convergence, we obtain f = g a.e., which in turns
implies that {fn} converges almost uniformly to f . By the definition of almost uniform convergence
for ε = 1/2 there exists a set F of measure at most 1/2 such that {fn} converges uniformly to f on
F c. But for δ = 1 and every N we can find n ≥ N (say n = N) and x ∈ E := [n, n + 1] \ F (note
λ(E) ≥ 1−λ(F ) ≥ 1/2) such that |fn(x)−f(x)| = 1 ≥ δ. It contradicts to the uniform convergence
on F c. 2

Problem 4. Let λ be the Lebesgue measure on R. Show that for every ε > 0 and every Lebesgue
measurable set E there exists an open F such that E ⊂ F and λ(F \ E) < ε (you may use that
λ∗(A) = inf{λ(B) : A ⊂ B, B is open}).
Solution. For every n consider En = E ∩ (−n, n). By the formula given in Problem 4 there
exists an open set Bn ⊃ En such that λ(En) + ε/2n ≥ λ(Bn) (note that we deal with measurable
sets, so λ = λ∗). Since En is of finite measure (less than 2n), we obtain

λ(Bn \ En) = λ(Bn)− λ(En) < ε/2n.

Finally consider F = ∪nBn, which is open as union of open sets. Clearly,

E ⊂ F and F \ E ⊂
∪
n≥1

(Bn \ En) .

Therefore
λ(F \ E) ≤

∑
n≥1

λ(Bn \ En) <
∑
n≥1

ε/2n = ε,

which proves the statement. 2

Problem 5. Let f be a function. Is it true that
a. f is measurable if and only if f+ and f− are measurable.
b. f is measurable if and only if |f | is measurable.

Solution.
a. We show that answer is yes. First assume that f is measurable. Then f+ = max{f, 0} and
f− = max{−f, 0} are measurable as maxima of two measurable functions by an exercise in the class
(note g = 0 is measurable as a constant function, by another exercise). On the other hand, if f+

and f− are measurable then f = f+ − f− is measurable as difference of two measurable functions.
b. We show that answer is no. Let B be a non Lebesgue measurable set in R (exists by a statement
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in the class). Let f be defined by f(x) = 1 for x ∈ B and f(x) = −1 otherwise. Then {f > 0} = B,
which is not Lebesgue measurable, so f is not measurable. On the other hand, |f | = 1 at every
point, so it is measurable. 2

Problem 6. Does convergence in measure imply pointwise a.e. convergence?

Solution. No. Consider the following example. For every n ≥ 1 and every 1 ≤ k ≤ n
define the function gnk as the characteristic function of the segment [(k − 1)/n, k/n] (we can
consider functions on R or just on [0, 1] with Lebesgue measure). Let {fn} be the sequence
g11, g21, g22, g31, g32, g33, g41, .... Then for every ε > 0 and every n > 1/ε one has

µ ({|gnk| > ε}) = µ ({[(k − 1)/n, k/n]}) = 1/n → 0,

which shows that {fn} converges in measure to 0. However for EVERY fixed x ∈ [0, 1] the sequence
{fn(x)} is not convergent, since it has infinitely many zeros and ones. Thus, {fn} is not pointwisely
convergent. 2

Problem 7. Let µ be a finite measure on Borel subsets of [0, 1] satisfying µ({x}) = 0 for every
x. Show that for every ε > 0 there exists a dense open F such that µ(F ) < ε.

Solution. First we show that for every a ∈ (0, 1) and every δ there exists b (which is smaller than
a and 1− a) such that (a− b, a+ b) has measure smaller than δ. Indeed, for all large enough n (so
that n > 1/a and n > 1/(1 − a)) consider bn = 1/n and In = (a − bn, a + bn). Then In ⊃ In+1 for
every n and {a} = ∩nIn. Since µ is finite, we obtain by continuity,

0 = µ (a) = µ (∩nIn) = lim
n→∞

µ (In) .

It shows that for every δ there exists n with µ (In) < δ.
Now consider A = Q ∩ (0, 1). It is countable and dense in [0, 1]. Since it is countable we

can write it as a sequence {ak}k. Fix ε > 0. By above, for every k there exists bk such that
Jk = (ak − bk, ak + bk) ⊂ (0, 1) and has measure smaller than ε/2k. Define F as union of Jk’s. Since
every Jk is open, F is open. Since J ⊃ A, J is dense in [0, 1]. Finally

µ(F ) ≤
∑
k≥1

µ(Jk) <
∑
k≥1

ε/2k = ε,

which proves the desired result. 2
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