
Some basic facts and definitions

1 Equivalence relation, partial order

In this section A denotes a set.

Definition. We say that R is a relation on A if R ⊂ A×A. Sometimes we
use notation xRy to say that (x, y) ∈ R.

Definition. Let R be a relation on A. We say that R is

1. reflexive if for every x ∈ A one has xRx,

2. symmetric if xRy implies yRx,

3. antisymmetric if xRy and yRx (simultaneously) imply x = y,

4. transitive if xRy and yRz (simultaneously) imply xRz.

Definition. Let R be a relation on A. We say that R is an equivalence
relation, usually denoted by ∼, if R is reflexive, symmetric and transitive.
We say that R is a partial ordering, usually denoted by ≤, if R is reflexive,
antisymmetric and transitive.

Definition. Given an equivalence relation ∼ on A, a non-empty subset S of
A is called an equivalence class if for every x ∈ S and y ∈ S one has x ∼ y.
It is well-known and easy to check that equivalence classes are disjoint and
that A is the union of them. Given x ∈ A we denote the equivalence class
corresponding to it by x̄, i.e.

x̄ = {y | y ∼ x} .

Definition. Let ≤ be a partial ordering on A. We say that A is partially-
ordered set. A subset S of A is called a chain if for every x ∈ S and y ∈ S
one has either x ≤ y or y ≤ x. A subset S of A is called bounded if there
exists z ∈ A such that for every x ∈ S one has x ≤ z. An element x ∈ A is
called maximal if there is no z ∈ A, z 6= x such that x ≤ z.

Lemma 1.1 (Zorn’s Lemma) Let A be a partially-ordered set such that
every chain in A is bounded. Then A has a maximal element.
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2 Linear spaces

Let K denotes either R or C.

Definition. A set X is called a linear space over K if two operations + :
X ×X → X and · : K×X → X are defined and satisfy

1. for every x ∈ X, y ∈ X one has x + y = y + x,

2. for every x ∈ X, y ∈ X, z ∈ X one has (x + y) + z = x + (y + z),

3. there exists θ ∈ X such that for every x ∈ X one has x + θ = x,

4. for every x ∈ X there exists x̃ such that x + x̃ = θ;

5. for every α ∈ K, x ∈ X, y ∈ X one has α · (x + y) = (α · y) + (α · x),

6. for every α ∈ K, β ∈ K, x ∈ X, one has (α + β) · x = (α · x) + (β · x),

7. for every α ∈ K, β ∈ K, x ∈ X, one has α · (β · x) = (αβ) · x,

8. for every x ∈ X one has 1 · x = x,

Remarks. 1. If such θ (as in “3”) exists then exists and unique. Usually
we denote it by 0. Do not confuse between 0 ∈ K and 0 ∈ X.
2. If such x̃ (as in “4”) exists then exists and unique. We denote it by −x.
3. Uniqueness of −x allows us to define operation − : X × X → X as
x− y = x + (−y).
4. If α ∈ K and x ∈ X we usually omit “·” in α · x and write just αx.

Exercises. 1. Prove remarks 1 and 2.
2. Show that for every α ∈ K and x ∈ X one has 0 · x = θ and α · θ = θ.

Definitions. Let X be a linear space. A non-empty subset Y of X is called
a subspace if for every α, β ∈ K, x, y ∈ Y one has αx + βy ∈ Y . Let S be a
non-empty subset of X. The span of S, denoted by span S is defined by

span S =

{
n∑

i=1

αixi | n ∈ N, αi ∈ K, xi ∈ S for every i ≤ n

}
.

In fact span S is the smallest subspace of X containing S (i.e. span S is the
subspace and for every subspace Y ⊂ X if Y ⊃ S then Y ⊃ span S).
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Definitions. Let X be a linear space. A finite non-empty set S = {x1, ..., xn}
⊂ X is called linearly independent if

∑n
i=1 αixi = 0 implies α1 = ... = αn = 0.

In general an (infinite) subset S of X is called linearly independent if any
finite subset of S is linearly independent. If X is spanned by linearly inde-
pendent set S (i.e. span S = X) then S called an algebraic (or Hamel) basis
of X.

Theorem 2.1 Every linear space X 6= {0} has an algebraic basis.

Remark. This theorem follows from Zorn’s Lemma.

Definition. Let X be a linear space and S be its basis. If S is finite then X
is called finite-dimensional and the dimension of X is the cardinality of S (it
is well-known and easy to show that any two bases of X has the same amount
of elements). If S is not finite then we say that X is infinite dimensional and
the dimension of X is infinity. We denote the dimension of X by dim X. If
X = {0} we define dim X = 0.

3 Convex sets, Minkowski sum of sets

In this section X denotes a linear space.

Definitions. A set A ⊂ X is called convex if for every x ∈ A, y ∈ A and
α ∈ [0, 1] one has αx + (1 − α)y ∈ A. The convex hull of A, denoted by
conv A, is the smallest (in sense of inclusion) convex set containing A, i.e.

conv A =

{
n∑

i=1

αixi | n ∈ N, αi ≥ 0, xi ∈ A for every i ≤ n, and
n∑

i=1

αi = 1

}
or, equivalently, conv A is the intersection of all convex sets containing A.

Definitions. (Minkowski sum and difference of sets) Let A ⊂ X, B ⊂ X,
x ∈ X, α ∈ K. We define

A + B = {x + y | x ∈ A, y ∈ B} , x + A = {x}+ A = {x + y | y ∈ A} ,

αA = {αx | x ∈ A} , −A = (−1)A = {−x | x ∈ A} ,

A−B = A + (−B) = {x− y | x ∈ A, y ∈ B} .

Remark. Note that in general A + A 6= 2A, A− A 6= 0.

Exercise. Let A be a convex subset of X. Let α ≥ 0, β ≥ 0. Show that
αA + βA = (α + β)A.
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4 Metric spaces

Definition. Let X be a set and let ρ : X × X → [0,∞) be a function
satisfying

1. ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x) for every x, y ∈ X,

3. (triangle inequality) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for every x, y, z ∈ X.

Then ρ is called a metric and X = (X, ρ) is called a metric space. If Y is a
subspace of X then

ρ̄ = ρY×Y

is a metric on Y which is called induced (by ρ) metric.

Exercise. Show that the condition “3” in the definition above is equivalent
to the condition

|ρ(x, y)− ρ(x, z)| ≤ ρ(z, y) for every x, y, z ∈ X. (4.1)

Remark. Inequality (4.1) we also call triangle inequality.

Definitions. Let X = (X, ρ) be a metric space. Open ball with center at
x ∈ X and radius r > 0, denoted by B(x, r), is defined by

B(x, r) = {y ∈ X | ρ(x, y) < r} .

The family of all open balls defines a topology on X which is called induced
(by ρ) topology. Equivalently we can define this topology defining open sets
as follows: A set A ⊂ X is called open if for every x ∈ A there exists r > 0
such that B(x, r) ⊂ A. As usual a set A ⊂ X is called closed if a complement
of A is open (recall that complement of A, denoted by Ac, is the set of all
points of X which are not in A. The interior of a set A, denoted by Int A, is
defined as the union of all open sets contained in A, i.e. x ∈ Int A if and only
if there exists r > 0 such that B(x, r) ⊂ A. The closure of A, denoted by
clos A, is set of all point x such that for every r > 0 one has A∩B(x, r) 6= ∅.
The boundary of a set A, denoted by ∂A, is defined as set of all points which
are in clos A but not in Int A, i.e. ∂A = clos A ∩ (Int A)c.
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Definition. Let X = (X, ρ) be a metric space and {xi}∞i=1 be a sequence
in X. We say that the sequence converges to x0 ∈ X if for every ε > 0 there
exists N = N(ε) such that for every n ≥ N one has ρ(xn, x0) < ε. We write

lim
i→∞

xi = x0 or xi → x0

and say that x0 is the limit of the sequence. If a sequence converges to some
limit then it is called convergent, otherwise it is called divergent.

Definition. Let X = (X, ρ) be a metric space, A ⊂ X, x0 ∈ X. We say
that x0 is a limit point of A if there exists a sequence {xi}∞i=1 in A such that
xi 6= x0 for every i and limi→∞ xi = x0.

Claim 4.1 Let X = (X, ρ) be a metric space and A ⊂ X. Then A is closed
if and only if A = clos A. Moreover, A is closed if and only if A contains all
its limit points.

Exercise. Let x ∈ X and r > 0. Show that

clos B(x, r) = {y ∈ X | ρ(x, y) ≤ r} .

Exercises. Let ‖ · ‖ be a norm on X and ρ be the induced metric (i.e.
ρ(x, y) = ‖x− y‖ for every x, y in X).
1. Show that B(x, r) and clos B(x, r) are convex for every x ∈ X and r > 0.
2. Show that for every x, y ∈ X every r > 0, R > 0, and every α, β ∈ K
(β 6= 0) one has

αB(x, r) + βB(y, R) = B (αx + βy, |α|r + |β|R) ,

α clos B(x, r) + βB(y, R) = B (αx + βy, |α|r + |β|R) ,

α clos B(x, r) + β clos B(y, R) = B (αx + βy, |α|r + |β|R) ,

where sums of sets and product of a set by a scalar are in the sense of
definitions of Section 3.
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5 Compactness in metric spaces

In this section X = (X, ρ) denotes a metric space.

Definitions. Let K be a subset of X. K is called compact if every covering
of K by open sets contains a finite subcovering, i.e. if

K ⊂
⋃

U∈F

U, every U ∈ F is an open subset of X

implies

K ⊂
n⋃

i=1

Ui

for some U1, ..., Un ∈ F .

Remark. Note that the compactness is a topological property.

Definition. Let K and A be subsets of X. Let ε > 0. A is called an ε-net
for K if K can be covered by balls of radius ε with centers in A, i.e. if

K ⊂
⋃
a∈A

B (a, ε) .

If A is finite we say that there exists a finite ε-net for K.

Here are some basic facts about compact sets.

Lemma 5.1 Let A ⊂ X be a closed set and K ⊂ X be a compact set. If
A ⊂ K then A is compact.

Lemma 5.2 Let K ⊂ X be a compact set and x ∈ X. If x 6∈ K then there
exist open disjoint sets U and V such that x ∈ U and K ⊂ V .

Lemma 5.3 Let K ⊂ X be a compact set. Then K is closed.

Definition. Let A ⊂ X. A is called sequentially compact if every sequence
in A has a subsequence that converges to a point in A.

Theorem 5.4 Let K ⊂ X. The following are equivalent

[i] K is compact.

[ii] K is sequentially compact.

[iii] K is complete (as a space (K, ρ)) and for every ε > 0 there exists a
finite ε-net for K.
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Theorem 5.5 Let X1, ..., Xn be topological spaces (as usual it is enough
for us to consider metric spaces only). Let Ki ⊂ Xi, i ≤ n, be compact sets.
Then K1 ×K2 × ...×Kn is a compact set in X1 ×X2 × ...×Xn. (Topology
on X1 ×X2 × ...×Xn is defined by {U1 × U2 × ...× Un} over all choices of
open sets Ui ⊂ Xi, i ≤ n. Equivalently, a sequence

fm = (fm
1 , fm

2 , ..., fm
n ) → f = (f1, f2, ..., fn)

if and only if limm→∞ fm
i = fi for every i ≤ n).

At the end of this section we discuss relatively compact sets.

Definition. A subset K of X is called relative compact if clos K is compact.

Example. Let X = R with the standard metric (i.e. ρ(x, y) = |x−y|). Then
a segment [0, 1] is compact subset of X; a segment [0, 1) is not compact, but
relatively compact.

Remark. Note that Lemma 5.3 implies that every compact set is also
relatively compact.

By Lemma 5.1 we immediately obtain

Lemma 5.6 Let A be a subset of X and K ⊂ X be a relatively compact set.
If A ⊂ K then A is relative compact.

Theorem 5.5 has the following two corollaries.

Corollary 5.7 Every relatively compact set is bounded (i.e. is contained in
some ball).

Corollary 5.8 Let X be complete metric space and K ⊂ X. The following
are equivalent

[i] K is a relatively compact set.

[ii] For every ε > 0 there exists a finite ε-net for K.

[iii] For every ε > 0 there exists a compact ε-net for K.

Exercises. Prove Lemma 5.6 and Corollaries 5.7 and 5.8
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6 Continuous functions on metric spaces

In this section X = (X, ρ), Y = (Y, σ) denote metric spaces and f : X → Y
denotes a function. In most cases we will work with Y = K (and σ(x, y) =
|x− y|).
Definitions. 1. A function f is continuous at the point x ∈ X if for every
sequence xi → x one has f(xi) → f(x).
2. A function f is continuous at the point x ∈ X if for every ε > 0 there
exists δ = δ(x, ε) > 0 such that for every y satisfying ρ(y, x) < δ (i.e. for
every y ∈ B(x, δ)) one has σ(f(y), f(x)) ≤ ε (i.e. f(y) ∈ B(f(x), ε)).

Exercise. Show that definitions 1 and 2 are equivalent.

Definitions. 3. A function f is continuous if it is continuous at every
point.
4. A function f is continuous if for every open set U ⊂ Y its preimage
f−1(U) is open in X.
5. A function f is continuous if for every closed set V ⊂ Y its preimage
f−1(V ) is closed in X.

Exercise. Show that definitions 3, 4, and 5 are equivalent.

Theorem 6.1 Let A be a relative compact in X and K be a compact in X.
Let f : X → Y be a continuous function. Then f(A) is a relative compact
in Y and f(K) is a compact in Y .

Theorem 6.2 Let K be a compact in X and f : X → K be a continuous
function. Then f attains its minimal and maximal value on K, that is there
exist x, y ∈ K such that for every z ∈ K one has

f(x) ≤ f(z) ≤ f(y).

In particular, if A is a relative compact in X then f(A) is a bounded set.

Definition. A function f : X → Y is called uniformly continuous if for
every ε > 0 there exists δ = δ(ε) > 0 such that for every x, y satisfying
ρ(y, x) < δ one has σ(f(y), f(x)) ≤ ε.

Theorem 6.3 Let X be a compact metric space and f : X → K be a con-
tinuous function. Then f is uniformly continuous.
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Definition. Let X be a metric space. The space

{g : X → K | g is continuous and bounded function}

with the metric
d∞(g, h) = sup

x∈X
|g(x)− h(x)|

is denoted by C(X).

Exercise. Show that d∞ is indeed a metric on that space.

Theorem 6.4 The space C(X) is complete.

Proof: For simplicity we denote d∞ just by d. First note that, by definition
for every functions g, h and every x ∈ X one has

|g(x)− h(x)| ≤ sup
z∈X

|g(z)− h(z)| ≤ d(g, h). (6.1)

Let fn be a fundamental sequence in C(X), i.e. d(fn, fm) → 0 as n,m →
∞. By (6.1) it implies that for every (fixed) x ∈ X one has |fn(x)−fm(x)| →
0 as n, m → ∞, i.e. {fn(x)}n is fundamental in K. Since K is complete we
obtain that for every x ∈ X the sequence {fn(x)}n is convergent in K. We
denote the limit of that sequence by yx and define the function f : X → K
by

f(x) = yx = lim
n→∞

fn(x). (6.2)

To prove theorem it is enough to show that f ∈ C(X) and that d(f, fn) → 0
(i.e. that f is limit of {fn}n in C(X). Note that by our construction we
know only that f is the pointwise limit of {fn}n).

Fix ε > 0.
Since {fn(x)}n is fundamental there exists N0 = N0(ε) such that for every

n,m ≥ N0 one has d(fn, fm) < ε, that is |fn(x)−fm(x)| < ε for every x ∈ X.
Now, by (6.2), for every x ∈ X there exists N1 = N1(ε, x) such that for

every m ≥ N1 one has |fn(x)− fm(x)| < ε.
It follows that for every n ≥ N0, for every x ∈ X, taking any m > N1,

one has

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε + ε = 2ε.
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Therefore for every n ≥ N0 one has

d(fn, f) = sup
x∈X

|fn(x)− f(x)| ≤ 2ε. (6.3)

Since fN0 is continuous for every x0 ∈ X there exists δ = δ(x0, ε) > 0
such that for every x satisfying ρ(x, x0) ≤ δ one has |fN0(x)− fN0(x0)| < ε.
Thus for every x satisfying ρ(x, x0) ≤ δ one has

|f(x)− f(x0)| ≤ |f(x)− fN0(x)|+ |fN0(x)− fN0(x0)|+ |fN0(x0)− f(x0)|
< 2ε + ε + 2ε = 5ε. (6.4)

Since fN0 is bounded there exists M = M(f(N0)) > 0 such that

sup
x
|fN0(x)| ≤ M.

Therefore, by (6.3), for every y ∈ X one has

|f(y)| ≤ |f(y)− fN0(y)|+ |fN0(y)|
≤ sup

x∈X
|fN0(x)− f(x)|+ sup

x∈X
|fN0(x)| ≤ 2ε + M0. (6.5)

Since ε > 0 was arbitrary, (6.5) means that f is bounded, (6.4) means
that

∀ε > 0∀x0 ∃δ = δ(x0, ε) such that |f(x)−f(x0)| < 5ε whenever ρ(x, x0) ≤ δ,

i.e. f is continuous. Therefore f ∈ C(X). Finally, (6.3) means

∀ε > 0 ∃N0 = N0(ε) ∀n ≥ N0 one has d(fn, f) ≤ 2ε,

which shows that f is the limit of {fn}n in C(X). It completes the proof. 2
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