Some basic facts and definitions

1 Equivalence relation, partial order

In this section A denotes a set.

Definition. We say that R is a relation on A if R C A x A. Sometimes we
use notation xRy to say that (z,y) € R.

Definition. Let R be a relation on A. We say that R is
1. reflexive if for every z € A one has xRz,
2. symmetric if xRy implies yRz,
3. antisymmetric if xRy and yRx (simultaneously) imply z = v,

4. transitive if xRy and yRz (simultaneously) imply xRz.

Definition. Let R be a relation on A. We say that R is an equivalence
relation, usually denoted by ~, if R is reflexive, symmetric and transitive.
We say that R is a partial ordering, usually denoted by <, if R is reflexive,
antisymmetric and transitive.

Definition. Given an equivalence relation ~ on A, a non-empty subset S of
A is called an equivalence class if for every x € S and y € S one has z ~ y.
It is well-known and easy to check that equivalence classes are disjoint and
that A is the union of them. Given x € A we denote the equivalence class
corresponding to it by z, i.e.

T={y|y~ux}.

Definition. Let < be a partial ordering on A. We say that A is partially-
ordered set. A subset S of A is called a chain if for every z € S and y € S
one has either x < y or y < x. A subset S of A is called bounded if there
exists z € A such that for every x € S one has x < z. An element z € A is
called maximal if there is no z € A, z # x such that z < z.

Lemma 1.1 (Zorn’s Lemma)  Let A be a partially-ordered set such that
every chain in A is bounded. Then A has a maximal element.



2 Linear spaces

Let K denotes either R or C.

Definition. A set X is called a linear space over K if two operations + :
XxX — Xand - :KxX — X are defined and satisfy

1. for every v € X,y € X one has v +y =y + «x,

2. foreveryr € X, y€ X,2€ X onehas (x+y) +z=1z+ (y + 2),

3. there exists 8 € X such that for every x € X one has z + 0 = z,

4. for every x € X there exists & such that x + 1 = 0;

5. foreverya € K, x € X,y€ X onehas a- (z +y) = (a-y) + (a - x),
6. forevery v € K, € K,z € X, one has (a«+ ) -z = (a-2x)+ (- x),
7. forevery o € K, € K,z € X, one has a- (- x) = (aff) - ,

8. for every x € X one has 1 -z =z,

Remarks. 1. If such 6 (as in “3”) exists then exists and unique. Usually
we denote it by 0. Do not confuse between 0 € K and 0 € X.
2. If such # (as in “4”) exists then exists and unique. We denote it by —z.

3. Uniqueness of —x allows us to define operation — : X x X — X as
r—y=x+(-y).
4. If « € K and x € X we usually omit “” in « - x and write just ax.

Exercises. 1. Prove remarks 1 and 2.
2. Show that for every « € K and x € X one has 0-x =60 and o - 0 = 6.

Definitions. Let X be a linear space. A non-empty subset Y of X is called
a subspace if for every o, B € K, 2,y € Y one has az + [y € Y. Let S be a
non-empty subset of X. The span of S, denoted by span S is defined by

n
span S = {Zaixi |neN a; € K x; €S for every i < n}
i=1

In fact span S is the smallest subspace of X containing S (i.e. span S is the
subspace and for every subspace Y C X if Y O S then Y D span 9).



Definitions. Let X be a linear space. A finite non-empty set S = {1, ..., z,}
C X is called linearly independent if Z?:l a;r; = 0 impliesa; = ... = a,, = 0.
In general an (infinite) subset S of X is called linearly independent if any
finite subset of S is linearly independent. If X is spanned by linearly inde-
pendent set S (i.e. span S = X) then S called an algebraic (or Hamel) basis
of X.

Theorem 2.1 FEvery linear space X # {0} has an algebraic basis.

Remark. This theorem follows from Zorn’s Lemma.

Definition. Let X be a linear space and S be its basis. If S is finite then X
is called finite-dimensional and the dimension of X is the cardinality of S (it
is well-known and easy to show that any two bases of X has the same amount
of elements). If S is not finite then we say that X is infinite dimensional and
the dimension of X is infinity. We denote the dimension of X by dim X. If
X = {0} we define dim X = 0.

3 Convex sets, Minkowski sum of sets

In this section X denotes a linear space.

Definitions. A set A C X is called convex if for every x € A, y € A and
a € [0,1] one has ax + (1 — a)y € A. The convex hull of A, denoted by
conv A, is the smallest (in sense of inclusion) convex set containing A, i.e.

conv A = {ZO@%‘ |neNa; >0,z; € Afor every i <n, and Zazzl}

i=1 =1
or, equivalently, conv A is the intersection of all convex sets containing A.

Definitions. (Minkowski sum and difference of sets) Let A C X, B C X,
r € X, a € K. We define

A+B={z+y|lrzecAyeB}, z+A={a}+A={x+y|yeA},
aA={ax |z € A}, -A=(-1D)A={-a]|ze A},
A—B=A+(-B)={z—y|z€ A ye B}.

Remark. Note that in general A+ A # 2A, A — A # 0.

Exercise. Let A be a convex subset of X. Let a > 0, 8 > 0. Show that
aA+ A = (a+ p)A.



4 Metric spaces

Definition. Let X be a set and let p : X x X — [0,00) be a function
satisfying

1. p(z,y) =0 if and only if z =y,
2. p(x,y) = p(y,z) for every =,y € X,
3. (triangle inequality) p(z,y) < p(z,z)+ p(z,y) for every z,y, z € X.

Then p is called a metric and X = (X, p) is called a metric space. If Y is a
subspace of X then

P = Pyxy
is a metric on Y which is called induced (by p) metric.

Exercise. Show that the condition “3” in the definition above is equivalent
to the condition

lp(x,y) — p(x, 2)| < p(z,y) for every z,y,z € X. (4.1)

Remark. Inequality (4.1) we also call triangle inequality.

Definitions. Let X = (X, p) be a metric space. Open ball with center at
x € X and radius r > 0, denoted by B(z,r), is defined by

B(z,r)={y € X | p(z,y) <r}.

The family of all open balls defines a topology on X which is called induced
(by p) topology. Equivalently we can define this topology defining open sets
as follows: A set A C X is called open if for every x € A there exists r > 0
such that B(z,r) C A. Asusual aset A C X is called closed if a complement
of A is open (recall that complement of A, denoted by A€, is the set of all
points of X which are not in A. The interior of a set A, denoted by Int A, is
defined as the union of all open sets contained in A, i.e. = € Int A if and only
if there exists r > 0 such that B(z,r) C A. The closure of A, denoted by
clos A, is set of all point x such that for every r > 0 one has AN B(x,r) # 0.
The boundary of a set A, denoted by 0A, is defined as set of all points which
are in clos A but not in Int A, i.e. 0A = clos AN (Int A)°.



Definition. Let X = (X, p) be a metric space and {x;}2, be a sequence
in X. We say that the sequence converges to zo € X if for every £ > 0 there
exists N = N(e) such that for every n > N one has p(x,,x¢) < . We write

limx; =29 or x; — 2

1—00
and say that xq is the limit of the sequence. If a sequence converges to some
limit then it is called convergent, otherwise it is called divergent.

Definition. Let X = (X, p) be a metric space, A C X, g € X. We say
that o is a limit point of A if there exists a sequence {z;}°; in A such that
x; # g for every ¢ and lim; . x; = xg.

Claim 4.1 Let X = (X, p) be a metric space and A C X. Then A is closed
if and only if A = clos A. Moreover, A is closed if and only if A contains all
its limit points.

Exercise. Let £ € X and r > 0. Show that

clos B(z,r) ={y € X | p(z,y) <r}.

Exercises. Let || - || be a norm on X and p be the induced metric (i.e.
p(x,y) = ||x — y|| for every z, y in X).

1. Show that B(x,r) and clos B(z, ) are convex for every x € X and r > 0.
2. Show that for every x, y € X every r > 0, R > 0, and every «, § € K
(B # 0) one has

aB(xz,r)+ B(y,R) = B (azx + By, |ajr + |B|R) ,

aclos B(x,r)+ 8B(y, R) = B (azx + By, |ajr + |B|R) ,
aclos B(x,r) 4+ fclos By, R) = B (ax + By, |a|r + ||R),

where sums of sets and product of a set by a scalar are in the sense of
definitions of Section 3.



5 Compactness in metric spaces

In this section X = (X, p) denotes a metric space.

Definitions. Let K be a subset of X. K is called compact if every covering
of K by open sets contains a finite subcovering, i.e. if

K C U U, every U € F is an open subset of X
UeF

implies
K clJu
i=1
for some Uy, ..., U, € F.

Remark. Note that the compactness is a topological property.

Definition. Let K and A be subsets of X. Let ¢ > 0. A is called an e-net
for K if K can be covered by balls of radius € with centers in A, i.e. if

K C UB(a,s).

acA
If A is finite we say that there exists a finite e-net for K.

Here are some basic facts about compact sets.

Lemma 5.1 Let A C X be a closed set and K C X be a compact set. If
A C K then A is compact.

Lemma 5.2 Let K C X be a compact set and x € X. If x & K then there
exist open disjoint sets U and V' such that x € U and K C V.

Lemma 5.3 Let K C X be a compact set. Then K s closed.

Definition. Let A C X. A is called sequentially compact if every sequence
in A has a subsequence that converges to a point in A.

Theorem 5.4 Let K C X. The following are equivalent
[i] K is compact.
[ii] K is sequentially compact.

[iii] K is complete (as a space (K, p)) and for every € > 0 there exists a
finite e-net for K.



Theorem 5.5 Let Xy, ..., X, be topological spaces (as usual it is enough
for us to consider metric spaces only). Let K; C X;, i < n, be compact sets.
Then Ky x Ky X ... x K,, is a compact set in X1 X Xo X ... x X,,. (Topology
on X1 X Xy X ... x Xy, is defined by {Uy x Uy X ... x U, } over all choices of

open sets U; C X;, 1 < n. FEquivalently, a sequence

fm = (f{n7f§ﬂa 7f71;n> - f - (fl’f27 7fn)
if and only if lim, .o fi" = fi for every i <n).
At the end of this section we discuss relatively compact sets.

Definition. A subset K of X is called relative compact if clos K is compact.

Example. Let X = R with the standard metric (i.e. p(z,y) = |z—y|). Then
a segment [0, 1] is compact subset of X; a segment [0, 1) is not compact, but
relatively compact.

Remark. Note that Lemma 5.3 implies that every compact set is also
relatively compact.

By Lemma 5.1 we immediately obtain

Lemma 5.6 Let A be a subset of X and K C X be a relatively compact set.
If A C K then A s relative compact.

Theorem 5.5 has the following two corollaries.

Corollary 5.7 Every relatively compact set is bounded (i.e. is contained in
some ball).

Corollary 5.8 Let X be complete metric space and K C X. The following
are equivalent

[i] K is a relatively compact set.
[ii] For every e > 0 there exists a finite e-net for K.

[iii] For every € > 0 there exists a compact e-net for K.

Exercises. Prove Lemma 5.6 and Corollaries 5.7 and 5.8



6 Continuous functions on metric spaces

In this section X = (X, p), Y = (Y, 0) denote metric spaces and f: X — Y
denotes a function. In most cases we will work with Y = K (and o(x,y) =
|z —yl).

Definitions. 1. A function f is continuous at the point z € X if for every
sequence z; — x one has f(z;) — f(z).

2. A function f is continuous at the point z € X if for every ¢ > 0 there
exists § = d(x,e) > 0 such that for every y satisfying p(y,x) < d (i.e. for

every y € B(z,d)) one has o(f(y), f(z)) <e (ie. f(y) € B(f(x),¢)).

Exercise. Show that definitions 1 and 2 are equivalent.

Definitions. 3. A function f is continuous if it is continuous at every
point.

4. A function f is continuous if for every open set U C Y its preimage
J~YU) is open in X.

5. A function f is continuous if for every closed set V' C Y its preimage

f7H(V) is closed in X.

Exercise. Show that definitions 3, 4, and 5 are equivalent.

Theorem 6.1 Let A be a relative compact in X and K be a compact in X.
Let f: X — Y be a continuous function. Then f(A) is a relative compact
inY and f(K) is a compact in'Y.

Theorem 6.2 Let K be a compact in X and f : X — K be a continuous
function. Then f attains its minimal and mazimal value on K, that is there
exist x, y € K such that for every z € K one has

fl@) < f(z) < f(y).

In particular, if A is a relative compact in X then f(A) is a bounded set.

Definition. A function f : X — Y is called uniformly continuous if for
every € > 0 there exists 6 = d(¢) > 0 such that for every z, y satisfying
)

p(y,x) < 0 one has U(f(y),f_(a: ) <e.

Theorem 6.3 Let X be a compact metric space and f : X — K be a con-
tinuous function. Then f is uniformly continuous.
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Definition. Let X be a metric space. The space
{g: X = K| g is continuous and bounded function}

with the metric
dos(g,h) = sup |g(x) — h(z)]

rzeX
is denoted by C'(X).

Exercise. Show that d., is indeed a metric on that space.
Theorem 6.4 The space C(X) is complete.

Proof: For simplicity we denote d, just by d. First note that, by definition
for every functions g, h and every x € X one has

|g(x) — h(z)| < suplg(z) — h(z)] < d(g, h). (6.1)

zeX

Let f,, be a fundamental sequence in C(X), i.e. d(fn, frn) — 0asn,m —
oo. By (6.1) it implies that for every (fixed) z € X one has |f,(z) — fi(z)] —
0 as n,m — o0, i.e. {fn(x)}, is fundamental in K. Since K is complete we
obtain that for every x € X the sequence {f,(x)}, is convergent in K. We
denote the limit of that sequence by y, and define the function f : X — K
by

£(&) = o = lim f,(z). (62)

To prove theorem it is enough to show that f € C'(X) and that d(f, f,) — 0
(i.e. that f is limit of {f,}, in C(X). Note that by our construction we
know only that f is the pointwise limit of {f,},).

Fix e > 0.

Since { f(x)}, is fundamental there exists Ny = Ny(¢) such that for every
n,m > Ny one has d(f,, fn) < &, that is | f,(z) — fm(x)| < € for every z € X.

Now, by (6.2), for every € X there exists N; = Nj(e,z) such that for
every m > Nj one has |f,(z) — f.(2)] <e.

It follows that for every n > N, for every x € X, taking any m > Ny,
one has

|fo(@) = F(2)] < | fa(@) = frl@)] + | frl2) — f(2)] < e4¢ = 2e.



Therefore for every n > Ny one has

d(fn, f) = sup | fulx) = flx)] < 2. (6.3)

zeX

Since fy, is continuous for every zy € X there exists 0 = d(xg,e) > 0
such that for every x satisfying p(x,x¢) < § one has |fn, () — fn,(z0)| < €.
Thus for every x satisfying p(z,z¢) < 0 one has

[f(2) = f(xo)l < [f(2) = fao (@) + [fovo () = Fovo (20) | + [ fvy (0) — f (o)
< 2e+e€e+ 2 = 5e. (6.4)

Since fy, is bounded there exists M = M (f(Ny)) > 0 such that

sup [ i, ()] < M.

Therefore, by (6.3), for every y € X one has

W < 1f W) = v @)+ v ()]
< sup | fvo () = f(z)] + Sup |fno(2)| <26+ M. (6.5)

Since € > 0 was arbitrary, (6.5) means that f is bounded, (6.4) means
that

Ve > 0Vxo 30 = 6(xg, €) such that |f(x)— f(zo)| < be whenever p(x,zq) < 9,
i.e. fis continuous. Therefore f € C(X). Finally, (6.3) means
Ve >0 3dNy = Ny(e) Vn > Ny one has  d(f,, f) < 2e,

which shows that f is the limit of {f,}, in C(X). It completes the proof. O
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