Additional Exercises.

Problem 1.

Let
$$T = \{t_{ij}\}_{i,j \le n} : \ell_2^n \to \ell_2^n$$
. Find $||T||_{\text{HS}}$.

Problem 2. Let $\{e_k\}_{k\geq 1}$ be an o.n.b. of a Hilbert space H and $\{a_k\}_{k\geq 1}$ be a sequence in \mathbb{K} . Define $T \in \mathcal{L}(H)$ by

$$Tx = \sum_{k \ge 1} a_k(x, e_k) e_k.$$

Find conditions on $\{a_k\}_{k\geq 1}$ such that **a.** T is well-defined; **b.** $T \in \mathcal{B}(H)$; **c.** $T \in \mathcal{K}(H)$.

Problem 3. Let X be a complex Banach space and $T \in \mathcal{B}(H)$ be such that ||Tx|| = ||x|| for every $x \in X$. Show that

$$\sigma(T) \subset \{\lambda \mid |\lambda| = 1\}.$$