Additional exercises for Chapter 3.

Problem 1. Let X be a normed space, $x \in X$, and $\{x_i\}_{i=1}^{\infty}$ be a sequence in X such that

$$\lim_{i \to \infty} x_i = x.$$

Show that

$$\lim_{i \to \infty} \|x_i\| = \|x\|.$$

Problem 2. Let X be a normed space and let $\sum_{i=1}^{\infty} x_i$ be a convergent series in X. Show that

$$\left\|\sum_{i=1}^{\infty} x_i\right\| \le \sum_{i=1}^{\infty} \left\|x_i\right\|.$$

Problem 3. Given $1 \le p < \infty$ and $x = \{x_i\}_{i=1}^n \in \mathbb{K}^n$, denote

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Show that for every p, q satisfying $1 \le p < q < \infty$ and every $x \in \mathbb{K}^n$ one has

$$||x||_p \le n^{1/p - 1/q} ||x||_q.$$

Problem 4. Let (Ω, μ) be a measure space. Assume p, r, q be positive real numbers such that 1/r = 1/p + 1/q. Show that for every two measurable functions f and g one has

$$\left(\int_{\Omega} |fg|^r\right)^{1/r} \le \left(\int_{\Omega} |f|^p\right)^{1/p} \left(\int_{\Omega} |g|^q\right)^{1/q}$$

Problem 5. Let $1 \le p < q \le \infty$. Show that $\ell_q \not\subset \ell_p$.

Problem 6. Let λ denote the Lebesgue measure on \mathbb{R} . Show that for every $p \neq q$ one has $L_p(\mathbb{R}, \lambda) \not\subset L_q(\mathbb{R}, \lambda)$.

Problem 7. Let X be the space of continuous functions $f:[0,1] \to \mathbb{R}$ endowed with the norm

$$||f||_X = \int_0^1 |f(t)| \, dt.$$

Is X complete?

Problem 8. Let $p \in [1, \infty]$. Let $\Omega = \{\omega\}$ be a singleton. Define a measure μ on Ω by $\mu(\Omega) = \infty$. Describe $L_p(\Omega, \mu)$. Is it true that for every $f \in L_{\infty}(\Omega, \mu)$ one has

$$||f||_{\infty} = \sup \left| \int_{\Omega} fg \ d\mu \right|,$$

where supremum is taken over all $g \in L_1(\Omega, \mu)$ with $||g||_1 \le 1$?

Problem 9. Show that

$$\mu\left(\{\|f\| > \|f\|_{\infty}\}\right) = 0.$$