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Sec. 4l Absolute Continuity l l l

14. a. Show that the sum and difference of two absolutely continuous

functions are also absolutely continuous.

b. Show that the product of two absolutely continuous functions is

absolutely continuous. [Hint: Make use of the fact that they are bounded.]

c. lf fis absolutely continuous on [c, b] and if/is never zero there,

then the function g : tlf is also absolutely continuous on [a, b].

15. The Cantor ternary function (Problem 2.48) is continuous and

monotone but not absolutely continuous.

16. A monotone function f on fa, b] is called singular if f 
' :0 a.e.

a. Show that any monotone increasing function is the sum of an

absolutely continuous function and a singular function.

b. Let f be a nondecreasing singular function on [4, b]. Then / has

the following property: (S) Given € ) 0, d > 0, there is a finite collection

{[y*, x*]] of nonoverlapping intervals such that

and

I l t * - . / r l  <d

I /trJ - fjr\ > f(b) - f(o) - e.

[Hint: See proof of Lemma 13.]

c. Let f be a nondecreasing function on la, bf with property (S) of

part (b). Then/is singular. [Hint:Use part (a).]

d. Let (,[) be a sequence of nondecreasing singular functions on

la, b) such that the function

f(x\:L f ,8)

is everywhere finite. Then/is also singular.

e. Show that there is a strictly increasing singular function on [0, 1].

17. a, Let F be absolutely continuous on [c, d] and g be absolutely con-

tinuous with c tgld onla,b]. Then F o g is absolutely continuous on

la, bf.
b. Let E : {x: g'(x) - 0}. Then m(glEl\ :0.

18. Let g be an absolutely continuous monotone function on [0, 1] and

E a set of measure zero. Then glEl has measute zeto-

19. a. Construct an absolutely continuous strictly monotone function g

on [0, 1] such that g' : 0 on a set of positive measure. [Hint: Let G be the

complement of a generalized Cantor set of positive measure (Problem 3.I4),

and let g be the indefinite integral of Xc.l

b. Show that there is a set E of measure zero such that g- tLE) is not

measurable. How does this example compare with that of Problem 3.28?
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20. A function / is said to satisfy a Lipschitz condition on an interval if

there is a const ant M such that l/(x) - f(y)l < Mlx- yl for all -x and y in

the interval.

a. Show that a function satisfying a Lipschitz condition is absolutely

continuous.

b. Show that an absolutely continuous function / satisfies a Lipschitz

condition if and only if l ,f ' l  is bounded'

c. Show that f satisfies a Lipschitz condition if one of its derivates

(say D*) is bounded.

21. Change of uariable. Let g be a monotone increasing absolutely con-

tinuous function on [4, b] with g(a) : c, g(b) : d'

a. Show that for any open set O clc,d)
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g- t(E) fl H has measure zero.
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