nd Integration [Chap. 5

ntegral if and only if it

is absolutely continother hand that F is ounded variation, and

ng. Hence F'(x) exists

 $(a) - F_2(a)$

function f = F - G. It G'(x) = 0 a.e., and so f

function is the indefi-

val [ϵ , 1] for each $\epsilon > 0$. ely continuous on [0, 1]?

w that

 $[f']^+.$

Sec. 4] Absolute Continuity

14. a. Show that the sum and difference of two absolutely continuous functions are also absolutely continuous.

b. Show that the product of two absolutely continuous functions is absolutely continuous. [Hint: Make use of the fact that they are bounded.]

c. If f is absolutely continuous on [a, b] and if f is never zero there, then the function g = 1/f is also absolutely continuous on [a, b].

15. The Cantor ternary function (Problem 2.48) is continuous and monotone but not absolutely continuous.

16. A monotone function f on [a, b] is called singular if f' = 0 a.e.

a. Show that any monotone increasing function is the sum of an absolutely continuous function and a singular function.

b. Let f be a nondecreasing singular function on [a, b]. Then f has the following property: (S) Given $\epsilon > 0$, $\delta > 0$, there is a finite collection $\{[y_k, x_k]\}$ of nonoverlapping intervals such that

$$\sum |x_k - y_k| < \delta$$

$$\sum f(x_k) - f(y_k) > f(b) - f(a) - \epsilon.$$

[Hint: See proof of Lemma 13.]

c. Let f be a nondecreasing function on [a, b] with property (S) of part (b). Then f is singular. [Hint: Use part (a).]

d. Let $\langle f_n \rangle$ be a sequence of nondecreasing singular functions on [a, b] such that the function

$$f(x) = \sum f_n(x)$$

is everywhere finite. Then f is also singular.

e. Show that there is a strictly increasing singular function on [0, 1].

17. a. Let F be absolutely continuous on [c, d] and g be absolutely continuous with $c \le g \le d$ on [a, b]. Then $F \circ g$ is absolutely continuous on [a, b].

b. Let $E = \{x: g'(x) = 0\}$. Then m(g[E]) = 0.

18. Let g be an absolutely continuous monotone function on [0, 1] and E a set of measure zero. Then g[E] has measure zero.

19. a. Construct an absolutely continuous strictly monotone function g on [0, 1] such that g' = 0 on a set of positive measure. [Hint: Let G be the complement of a generalized Cantor set of positive measure (Problem 3.14), and let g be the indefinite integral of χ_{G} .]

b. Show that there is a set E of measure zero such that $g^{-1}[E]$ is not measurable. How does this example compare with that of Problem 3.28?

Differentiation and Integration [Chap. 5

20. A function f is said to satisfy a Lipschitz condition on an interval if there is a constant M such that $|f(x) - f(y)| \le M|x - y|$ for all x and y in the interval.

a. Show that a function satisfying a Lipschitz condition is absolutely continuous.

b. Show that an absolutely continuous function f satisfies a Lipschitz condition if and only if |f'| is bounded.

c. Show that f satisfies a Lipschitz condition if one of its derivates $(say D^+)$ is bounded.

21. Change of variable. Let g be a monotone increasing absolutely continuous function on [a, b] with g(a) = c, g(b) = d.

a. Show that for any open set $O \subset [c, d]$

$$mO = \int_{g^{-1}[O]} g'(x) \, dx.$$

b. Let $H = \{x : g'(x) \neq 0\}$. If E is a subset of [c, d] with mE = 0, then $g^{-1}(E) \cap H$ has measure zero.

c. If E is a measurable subset of [c, d], then $F = g^{-1}[E] \cap H$ is measurable and

$$mE = \int_F g' = \int_a^b \chi_E(g(x))g'(x) \ dx.$$

d. If f is a nonnegative measurable function on [c, d], then $(f \circ g) g'$ is measurable on [a, b] and

$$\int_{c}^{d} f(y) \, dy = \int_{a}^{b} f(g(x))g'(x) \, dx.$$

22. Change of variable II. Let g be a monotone increasing absolutely continuous function on [a, b] with g(a) = c, g(b) = d, and let f be an integrable function on [c, d]. Let

$$F(y) = \int_c^y f(t) \ dt,$$

and set H(x) = F(g(x)).

a. Show that H is absolutely continuous (Problem 17a) and that F'(g(x)) exists wherever H' and g' exist and $g'(x) \neq 0$. Thus

$$H'(x) = F'(g(x))g'(x)$$

almost everywhere except on the set E where g'(x) = 0. b. Let

$$f_0(y) = \begin{cases} f(y) & y \notin g[E] \\ 0 & y \in g[E]. \end{cases}$$

112