Differentiation and Integration [Chap. 5

Hence

104

$$T_a^b(f) \le g(b) + h(b) - g(a) - h(a).$$

6. Corollary: If f is of bounded variation on [a, b], then f'(x) exists for almost all x in [a, b].

Problems

7. a. Let f be of bounded variation on [a, b]. Show that for each $c \in (a, b)$ the limit of f(x) exists as $x \to c -$ and also as $x \to c +$. Prove that a monotone function (and hence a function of bounded variation) can have only a countable number of discontinuities. [Hint: If f is monotone, the number of points where |f(c+) - f(c-)| > 1/n is finite.]

b. Construct a monotone function on [0, 1] which is discontinuous at each rational point.

8. a Show that if $a \le c \le b$, then $T_a^b = T_a^c + T_c^b$ and that hence $T_a^c \le T_a^b$.

b. Show that $T_a^b(f+g) \le T_a^b(f) + T_a^b(g)$, and $T_a^b(cf) = |c| T_a^b(f)$.

9. Let $\langle f_n \rangle$ be a sequence of functions on [a, b] that converges at each point of [a, b] to a function f. Then $T^b_a(f) \leq \underline{\lim} T^b_a(f_n)$.

10. a. Let f be defined by f(0) = 0 and $f(x) = x^2 \sin(1/x^2)$ for $x \neq 0$. Is f of bounded variation on [-1, 1]?

b. Let g be defined by g(0) = 0 and $g(x) = x^2 \sin(1/x)$ for $x \neq 0$. Is g of bounded variation on [-1, 1]?

11. Let f be of bounded variation on [a, b]. Show that

$$\int_a^b |f'| \le T_a^b(f).$$

3 Differentiation of an Integral

If f is an integrable function on [a, b], we define its indefinite integral to be the function F defined on [a, b] by

$$F(x) = \int_a^x f(t) \ dt.$$

In this section we show that the derivative of the indefinite integral of an integrable function is equal to the integrand almost everywhere. We begin by establishing some lemmas.