Quiz # 4.

In solutions below some definitions are omitted.

Problem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x, & x \in (-\infty, 2], \\ 2, & x \in (2, 3], \\ 4, & x \in (3, \infty). \end{cases}$$

Let λ_f be the corresponding Lebesgue-Stieltjes measure. Find $\lambda_f(\{0\}), \lambda_f((-1,1)), \lambda_f((2,4])$.

Solution. Since f(x) = x on $(-\infty, 2]$, λ_f coincides with the Lebesgue measure on $(-\infty, 2]$. Indeed, if $A \subset (-\infty, 2]$ is covered by intervals $I_k = (a_k, b_k]$ then A is also covered by intervals $J_k = I_k \cap (-\infty, 2]$ and $\alpha_f(J_k) \leq \alpha(I_k) = f(b_k) - f(a_k)$ for every k. It shows that one can consider coverings by I_k 's with $b_k \leq 2$ for every k. But on such I_k 's, $\alpha(I_k)$ coincide with volume/length $v(I_k) = b_k - a_k$. Thus, for $A \subset (-\infty, 2]$ the Lebesgue-Stieltjes measure coincides with the Lebesgue measure. We also know that on intervals the Lebesgue measure is equal to the length, thus $\lambda_f(\{0\}) = 0$, $\lambda_f((-1, 1)) = 2$.

We show now that $\lambda_f((2,4]) = 0$. Let $A_1 = (2,3]$ and $A_n = (3+1/n,4]$ for $n \ge 2$. Then

$$(2,4] \subset \bigcup_{n=1}^{\infty} A_n$$

and

$$\alpha_f(A_1) = f(3) - f(2) = 0, \quad \alpha_f(A_n) = f(4) - f(3 + 1/n) = 0, \text{ for every } n \ge 2.$$

Thus

$$0 \le \lambda_f((2,4]) \le \sum_{n=1}^{\infty} \alpha_f(A_n) = 0,$$

which implies the desired result.

Answer. $\lambda_f(\{0\}) = 0, \ \lambda_f((-1,1)) = 2, \ \lambda_f((2,4]) = 0.$

Remark. Another way to see that $\lambda_f(\{0\}) = 0$ and $\lambda_f((-1,1)) = 2$ is **a.** Consider A = (-1/n, 0]. Clearly, $\{0\} \subset A_n$ and, thus

$$0 \le \lambda_f(\{0\}) \le \lambda_f(A) \le \alpha_f(A) = f(0) - f(-1/n) = 1/n.$$

Sending n to infinity we obtain the result.

b. Assume I = (-1, 1) is covered by intervals $I_k = (a_k, b_k]$. Without loss of generality we can assume that $b_k \leq 2$ for every k (otherwise consider intervals $J_k = I_k \cap (-\infty, 2]$). Note also that I is covered by $A_k = [a_k, b_k]$. By a lemma in the class it implies

$$2 = v(I) \le \sum_{n=1}^{\infty} v(A_n) = \sum_{n=1}^{\infty} (b_n - a_n) = \sum_{n=1}^{\infty} \alpha_f(A_n),$$

where $v(\cdot)$ denotes the volume (length). It shows that $2 \leq \lambda_f((-1,1))$. On the other hand,

$$\lambda_f((-1,1)) \le \lambda_f((-1,1]) \le \alpha_f((-1,1]) = 2$$