Quiz # 1.

In solutions below definitions are omitted.

Problem 1. Let $\{E_i\}_i^\infty$ be a sequence of sets. Give definitions of $\liminf_{i\to\infty} E_i$, $\limsup_{i\to\infty} E_i$, and $\lim_{i\to\infty} E_i$. Show that $\liminf_{i\to\infty} E_i \subset \limsup_{i\to\infty} E_i$.

Solution. Let

$$x \in \liminf_{i \to \infty} E_i = \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} E_i.$$

Then, by the definition of union, there exists m such that

$$x \in \bigcap_{i=m}^{\infty} E_i.$$

Hence, by the definition of intersection, for every $i \geq m$ we have $x \in E_i$. Therefore, for every $k \geq 1$ we can find $i \ge k$ (for example $i = \max\{k, m\}$) such that $x \in E_i$. It implies that for every $k \ge 1$

$$x \in \bigcup_{i=k}^{\infty} E_i.$$

Since the last inclusion holds for every $k \ge 1$ we observe

$$x \in \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_i = \limsup_{i \to \infty} E_i.$$

Problem 2. Provide definitions of a relation on a set X, a reflexive relation, a symmetric relation, a transitive relation, an antisymmetric relation. Let R be a relation on \mathbb{R} defined by $(x, y) \in R$ if (and only if) x - y = 1. Is R reflexive? Is R symmetric? Is R transitive? Is R antisymmetric?

Solution. a. Clearly, $(0,0) \notin R$. Thus R is not reflexive.

b. Clearly $(1,0) \in R$, but $(0,1) \notin R$. Thus R is not symmetric.

c. Clearly $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$. Thus R is not transitive.

d. Assume that R is not antisymmetric. Then there exists $x, y \in \mathbb{R}^n$ such that $(x, y) \in R$, $(y, x) \in R$, and $x \neq y$. In this case, by the definition of R we have x - y = 1 and y - x = 1, which is impossible. We got a contradiction. It shows that R is antisymmetric.

Another solution: Let $(x,y) \in R$, $(y,x) \in R$. It means x - y = 1 and y - x = 1. Hence, x - y = y - x. It implies, 2x = 2y, that is x = y. Therefore R is antisymmetric.

Remark. Note, to show that R is not transitive, it is not enough to say that $(x, y) \in R$ and $(y,z) \in R$ imply $(x,y) \notin R$. In addition, one need to show that R contains such two pairs (x,y)and (y, z). Indeed, consider relation on \mathbb{R} defined by

$$R = \{ (x, y) \mid x < 0, \, y > 0 \}.$$

Then R is transitive and also has property " $(x, y) \in R$ and $(y, z) \in R$ imply that $(x, y) \notin R$ ".

Similarly, to show that R is not symmetric, it is not enough to say that $(x, y) \in R$ implies that $(y,x) \notin R$. In addition, one need to show that R contains at least one pair (x,y), that is to show that R is not empty. Indeed, if $R = \emptyset$ then R is symmetric and also has property " $(x, y) \in R$ implies that $(y, x) \notin R$ ".