ANSWERS.

1. 8.

- **2.** $21(1-1/\sqrt{2}).$
- **3.** 2.

4. $S = S_0 \cup S_1 \cup S_2$, where S_0 can parameterized as $r(u, v) = (u, 3\cos v, 3\sin v), -1 \le u \le 1, 0 \le v \le 2\pi$ with a normal $n = (0, 3\cos v, 3\sin v); S_1$ can parameterized as $r(u, v) = (-1, u\cos v, u\sin v), 0 \le u \le 3, 0 \le v \le 2\pi$ with a normal $n = (1, 0, 0); S_2$ can parameterized as $r(u, v) = (1, u\cos v, u\sin v), 0 \le u \le 3, 0 \le v \le 2\pi$ with a normal n = (1, 0, 0).

$$\iint_{S} x dS = 0.$$

5. $\operatorname{curl} F = (z, x, 1), \operatorname{div} F = z + y$. F is not conservative, since $\operatorname{curl} F \neq 0$.

6. S can parameterized as $r(u, v) = (u, v, \sqrt{4 - u^2 - v^2}), u^2 + v^2 \le 4$ (another way is $r(u, v) = (2\cos u \sin v, 2\sin u \sin v, 2\cos v), 0 \le u \le 2\pi, 0 \le v \le \pi/2$).

$$\iint_{S} \operatorname{curl} F \cdot dS = -4\pi.$$