MATH 214 A1, Fall 2013, Solutions to Practice Questions 1

(a) The sequence diverges to oo because

, .on?*=1/n_. n*(1-1/n%) . 1-—1/n3
lim a, = lim im = limn——— =0

(b) The sequence converges with lim b, = lim = 0 for the following reason:
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n—o00 n—soo M sin(n)/n

Since sin(n) is bounded, we have lim sin(n)/n = 0 (due to the Squeeze Theorem
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with —% < SIHT(") < 1) and hence lim (n + sin(n)/n) = cc.
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(c) Using
1 (-1 1
WS Tw Sw

and lim (— #) = lim n—12 =0, it follows from the Squeeze Theorem that
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lim ¢, = lim (=1) = 0.
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(d) This is of the form “0c®”, which is indeterminate, so we must be careful. We
have

1
limn Y™ = lim 7Y% = exp < — lim n(x))
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provided that the limit exists. L’Hospital’s rule yields

lim ln(_x): lim 1/—I:0.
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Therefore, the sequence converges with lim d,, = e = 1.
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(a) We have a,, = r™ for r = —2. Since |r| < 1, we obtain

lim a, = lim (—§) =0.
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(b) Since § > 1, the sequence diverges.
(¢) We have ¢, = cos(mn) = (—1)", which is a divergent sequence.
(d) We have d,, = sin(mn) = 0, hence lim d,, = 0.
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(a) This is a geometric series with
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hence Y >° ar™! with a = —3/16 and r = —3/4. Since |r| < 1, the series
converges and Y o0 ar" ! = ar = I—g’ﬁ = -2

(b) This is a geometric series with

o0 [e.9]
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hence > °7  ar"! with a = —1/4 and r = —4/3. Since |r| > 1, the series

diverges.

(¢) Because lim 3!/"4™ = oo, the series diverges.
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(d) Because lim 3'/74'/" = lim 12V/" = 12 A 190 = # 0, the series diverges.
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