$$-|\mathbf{T}_1|\cos 50^\circ + |\mathbf{T}_2|\cos 32^\circ = 0$$
$$|\mathbf{T}_1|\sin 50^\circ + |\mathbf{T}_2|\sin 32^\circ = 100$$

Solving the first of these equations for $|T_2|$ and substituting into the second, we get

$$|\mathbf{T}_1|\sin 50^\circ + \frac{|\mathbf{T}_1|\cos 50^\circ}{\cos 32^\circ}\sin 32^\circ = 100$$

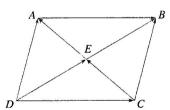
So the magnitudes of the tensions are

$$|\mathbf{T}_1| = \frac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ} \approx 85.64 \text{ lb}$$

and

$$|T_2| = \frac{|T_1|\cos 50^\circ}{\cos 32^\circ} \approx 64.91 \text{ lb}$$

Substituting these values in $\boxed{5}$ and $\boxed{6}$, we obtain the tension vectors

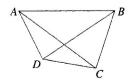

$$T_1 \approx -55.05 i + 65.60 j$$
 $T_2 \approx 55.05 i + 34.40 j$

$$T_2 \approx 55.05 i + 34.40 j$$

Exercises

798

- 1. Are the following quantities vectors or scalars? Explain.
 - (a) The cost of a theater ticket
 - (b) The current in a river
 - (c) The initial flight path from Houston to Dallas
 - (d) The population of the world
- 2. What is the relationship between the point (4, 7) and the vector $\langle 4, 7 \rangle$? Illustrate with a sketch.
- 3. Name all the equal vectors in the parallelogram shown.


4. Write each combination of vectors as a single vector.

(a)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

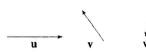
(b)
$$\overrightarrow{CD} + \overrightarrow{DB}$$

(c)
$$\overrightarrow{DB} - \overrightarrow{AB}$$

(d)
$$\overrightarrow{DC} + \overrightarrow{CA} + \overrightarrow{AB}$$

5. Copy the vectors in the figure and use them to draw the following vectors.

following version
$$(a) \mathbf{u} + \mathbf{v}$$


(b)
$$\mathbf{u} + \mathbf{w}$$

$$(c) v + w$$

(d)
$$\mathbf{u} - \mathbf{v}$$

(e)
$$\mathbf{v} + \mathbf{u} + \mathbf{w}$$

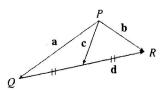
$$(f) \mathbf{u} - \mathbf{w} - \mathbf{v}$$

6. Copy the vectors in the figure and use them to draw the following vectors.

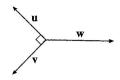
(a)
$$a + b$$

(b)
$$\mathbf{a} - \mathbf{b}$$

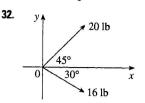
(c)
$$\frac{1}{2}$$
a

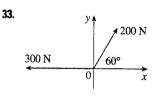

(d)
$$-3b$$

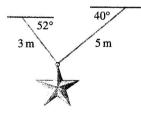
(e)
$$a + 2b$$


$$(f) 2b - a$$

7. In the figure, the tip of c and the tail of d are both the midpoint of QR. Express c and d in terms of a and b.




g. If the vectors in the figure satisfy $|\mathbf{u}| = |\mathbf{v}| = 1$ and $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$, what is $|\mathbf{w}|$?


- g-14 Find a vector \overrightarrow{a} with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.
- $\mathbf{g}_{A}(-1,1), B(3,2)$
- **10.** A(-4, -1), B(1, 2)
- 11. A(-1,3), B(2,2)
- **12.** A(2, 1), B(0, 6)
- 13. A(0, 3, 1), B(2, 3, -1)
- **14.** A(4, 0, -2), B(4, 2, 1)
- 15-18 Find the sum of the given vectors and illustrate geometrically.
- 15. (-1, 4), (6, -2)
- **16.** (3, -1), (-1, 5)
- 17. (3,0,1), (0,8,0)
- **18.** $\langle 1, 3, -2 \rangle$, $\langle 0, 0, 6 \rangle$
- 19-22 Find a + b, 2a + 3b, |a|, and |a b|.
- **19.** $\mathbf{a} = \langle 5, -12 \rangle, \quad \mathbf{b} = \langle -3, -6 \rangle$
- **20.** a = 4i + j, b = i 2j
- 21. a = i + 2j 3k, b = -2i j + 5k
- **22.** a = 2i 4j + 4k, b = 2j k
- 23-25 Find a unit vector that has the same direction as the given vector.
- 23. -3i + 7j
- **24.** $\langle -4, 2, 4 \rangle$
- 25. 8i j + 4k
- **25.** Find a vector that has the same direction as $\langle -2, 4, 2 \rangle$ but has length 6.
- **27–28** What is the angle between the given vector and the positive direction of the x-axis?
- **27.** $i + \sqrt{3} j$
- 28. 8i + 6j
- **29.** If v lies in the first quadrant and makes an angle $\pi/3$ with the positive x-axis and $|\mathbf{v}| = 4$, find v in component form.
- 30. If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.
- 31. A quarterback throws a football with angle of elevation 40° and speed 60 ft/s. Find the horizontal and vertical components of the velocity vector.

32-33 Find the magnitude of the resultant force and the angle it makes with the positive x-axis.

- 34. The magnitude of a velocity vector is called *speed*. Suppose that a wind is blowing from the direction N45°W at a speed of 50 km/h. (This means that the direction from which the wind blows is 45° west of the northerly direction.) A pilot is steering a plane in the direction N60°E at an airspeed (speed in still air) of 250 km/h. The *true course*, or *track*, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The *ground speed* of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.
- **35.** A woman walks due west on the deck of a ship at 3 mi/h. The ship is moving north at a speed of 22 mi/h. Find the speed and direction of the woman relative to the surface of the water.
- 36. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of each tension.

- 37. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm. Find the tension in each half of the clothesline.
- **38.** The tension **T** at each end of the chain has magnitude 25 N (see the figure). What is the weight of the chain?

- 39. A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at 3.5 km/h and the speed of his boat is 13 km/h.
 - (a) In what direction should he steer?
 - (b) How long will the trip take?