Exercises

- 1. The figure shows a curve C given by a vector function $\mathbf{r}(t)$.
 - (a) Draw the vectors $\mathbf{r}(4.5) \mathbf{r}(4)$ and $\mathbf{r}(4.2) \mathbf{r}(4)$.
 - (b) Draw the vectors

$$\frac{\mathbf{r}(4.5) - \mathbf{r}(4)}{0.5}$$
 and $\frac{\mathbf{r}(4.2) - \mathbf{r}(4)}{0.2}$

- (c) Write expressions for $\mathbf{r}'(4)$ and the unit tangent vector $\mathbf{T}(4)$.
- (d) Draw the vector $\mathbf{T}(4)$.

- 2. (a) Make a large sketch of the curve described by the vector function $\mathbf{r}(t) = \langle t^2, t \rangle$, $0 \le t \le 2$, and draw the vectors r(1), r(1.1), and r(1.1) - r(1).
 - (b) Draw the vector $\mathbf{r}'(1)$ starting at (1, 1), and compare it with the vector

$$\frac{\mathbf{r}(1.1) - \mathbf{r}(1)}{0.1}$$

Explain why these vectors are so close to each other in length and direction.

3-8

- (a) Sketch the plane curve with the given vector equation.
- (b) Find $\mathbf{r}'(t)$.
- (c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}'(t)$ for the given value of t.

3.
$$\mathbf{r}(t) = \langle t - 2, t^2 + 1 \rangle, t = -1$$

4.
$$\mathbf{r}(t) = \langle t^2, t^3 \rangle$$
, $t = 1$

5.
$$\mathbf{r}(t) = \sin t \, \mathbf{i} + 2 \cos t \, \mathbf{j}, \quad t = \pi/4$$

6.
$$\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j}, \quad t = 0$$

7.
$$\mathbf{r}(t) = e^{2t} \mathbf{i} + e^{t} \mathbf{j}, \quad t = 0$$

8.
$$\mathbf{r}(t) = (1 + \cos t)\mathbf{i} + (2 + \sin t)\mathbf{j}, \quad t = \pi/6$$

9-16 Find the derivative of the vector function.

9.
$$\mathbf{r}(t) = \langle t \sin t, t^2, t \cos 2t \rangle$$

10.
$$\mathbf{r}(t) = \langle \tan t, \sec t, 1/t^2 \rangle$$

11.
$$\mathbf{r}(t) = t \, \mathbf{i} + \mathbf{j} + 2\sqrt{t} \, \mathbf{k}$$

12.
$$\mathbf{r}(t) = \frac{1}{1+t}\mathbf{i} + \frac{t}{1+t}\mathbf{j} + \frac{t^2}{1+t}\mathbf{k}$$

13.
$$\mathbf{r}(t) = e^{t^2}\mathbf{i} - \mathbf{i} + \ln(1 + 3t)\mathbf{k}$$

14.
$$\mathbf{r}(t) = at \cos 3t \mathbf{i} + b \sin^3 t \mathbf{j} + c \cos^3 t \mathbf{k}$$

15.
$$\mathbf{r}(t) = \mathbf{a} + t \, \mathbf{b} + t^2 \, \mathbf{c}$$

16.
$$r(t) = t a \times (b + t c)$$

17-20 Find the unit tangent vector T(t) at the point with the given value of the parameter t.

17.
$$\mathbf{r}(t) = \langle te^{-t}, 2 \arctan t, 2e^{t} \rangle$$
, $t = 0$

18.
$$\mathbf{r}(t) = \langle t^3 + 3t, t^2 + 1, 3t + 4 \rangle, \quad t = 1$$

19.
$$\mathbf{r}(t) = \cos t \mathbf{i} + 3t \mathbf{i} + 2 \sin 2t \mathbf{k}$$
. $t = 0$

20.
$$\mathbf{r}(t) = \sin^2 t \, \mathbf{i} + \cos^2 t \, \mathbf{j} + \tan^2 t \, \mathbf{k}, \quad t = \pi/4$$

21. If
$$\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$$
, find $\mathbf{r}'(t)$, $\mathbf{T}(1)$, $\mathbf{r}''(t)$, and $\mathbf{r}'(t) \times \mathbf{r}''(t)$.

22. If
$$\mathbf{r}(t) = \langle e^{2t}, e^{-2t}, te^{2t} \rangle$$
, find $\mathbf{T}(0)$, $\mathbf{r}''(0)$, and $\mathbf{r}'(t) \cdot \mathbf{r}''(t)$.

23-26 Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

23.
$$x = 1 + 2\sqrt{t}$$
, $y = t^3 - t$, $z = t^3 + t$; (3, 0, 2)

24.
$$x = e^t$$
, $y = te^t$, $z = te^{t^2}$; $(1, 0, 0)$

25.
$$x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$, $z = e^{-t}$; (1, 0, 1)

26.
$$x = \sqrt{t^2 + 3}$$
, $y = \ln(t^2 + 3)$, $z = t$; (2, ln 4, 1)

- 27. Find a vector equation for the tangent line to the curve of intersection of the cylinders $x^2 + y^2 = 25$ and $y^2 + z^2 = 20$ at the point (3, 4, 2).
- **28.** Find the point on the curve $\mathbf{r}(t) = \langle 2 \cos t, 2 \sin t, e^t \rangle$, $0 \le t \le \pi$, where the tangent line is parallel to the plane $\sqrt{3}x + y = 1.$

29.
$$x = t$$
, $y = e^{-t}$, $z = 2t - t^2$; (0, 1, 0)

30.
$$x = 2 \cos t$$
, $y = 2 \sin t$, $z = 4 \cos 2t$; $(\sqrt{3}, 1, 2)$

31.
$$x = t \cos t$$
, $y = t$, $z = t \sin t$; $(-\pi, \pi, 0)$

- 32. (a) Find the point of intersection of the tangent lines to the curve $\mathbf{r}(t) = \langle \sin \pi t, 2 \sin \pi t, \cos \pi t \rangle$ at the points where t = 0 and t = 0.5.
- A (b) Illustrate by graphing the curve and both tangent lines.
 - **33.** The curves $\mathbf{r}_1(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{r}_2(t) = \langle \sin t, \sin 2t, t \rangle$ intersect at the origin. Find their angle of intersection correct to the nearest degree.