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CHAPTER 11

INFINITE SEQUENGES AND SERIES

In the following examples we don’t work out all the details but simply indicate whigj,
tests should be used.
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Since a, is an algebraic function of n, we compare the given series with a p-series. The
comparison series for the Limit Comparison Test is 2 by, where
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Since the integral Jf xe ™ dx is-easily evaluated, we use the Integral Test. The Ratio Tes
also works. E
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Since the series is alternating, we use the Alternating Series Test. b |
Since the series involves k!, we use the Ratio Test. E &
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Since the series is closely related to the geometric series 2 1/3", we use the Comparison
Test. F
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Power Series
A power series is a series of the form
E Cax" = co + oix + et ot Ao
n=0
where x is a variable and the ¢,’s are constants called the coefficients of the series. For each
fixed x, the series [1] is a series of constants that we can test for convergence or divergence.
A power series may converge for some values of x and diverge for other values of x. The |
sum of the series is a function |
flah=¢6 + e+ @+ 250 T g F e eo
whose domain is the set of all x for which the series converges. Notice that f resembles a
polynomial. The only difference is that f has infinitely many terms.
Trigonortstric Series For instance. if we take ¢, = 1 for all n, the power series becomes the geometric series
Apower - iies is a series in which each term is -
apower - «tion. A trigonometric series 2 i=l4+x+2+Fx"+
n=_0
" {a, cos nx + b, sin nx) ) ) ]
which converges when —1 < x < 1 and diverges when | x| = 1. (See Equation 11.2.5.)
is a serie: whose terms are triggnometric More generally, a series of the form
functions “4is type of series is discussed on .
the webs: . -
e Sedx=ay=co+alx—a)+elx—a+ -
“vww.stewartcalculus.com n=0
Ulick on -+ witional Topics and then on Fourier is called a power series in (x — @) or a power series centered at a or a power series about
e a. Notice that in writing out the term corresponding to n = 0 in Equations | and 2 we have
adopted the convention that (x — a)’ = | even when x = a. Notice also that when x = a

all of the terms are O for n = 1 and so the power series [2] always converges when x = a.
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For what values of x is the series Y, n!x" convergent?
=0
We use the Ratio Test. If we let a,, as usual, denote the nth term of the series,

» then ¢, = nlx". If x # 0, we have
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