In the following examples we don't work out all the details but simply indicate which tests should be used.

$$\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$$

Since $a_n \to \frac{1}{2} \neq 0$ as $n \to \infty$, we should use the Test for Divergence.

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{3n^3+4n^2+2}$$

Since a_n is an algebraic function of n, we compare the given series with a p-series. The comparison series for the Limit Comparison Test is $\sum b_n$, where

$$b_n = \frac{\sqrt{n^3}}{3n^3} = \frac{n^{3/2}}{3n^3} = \frac{1}{3n^{3/2}}$$

$$\sum_{n=1}^{\infty} ne^{-n^2}$$

Since the integral $\int_1^\infty xe^{-x^2} dx$ is easily evaluated, we use the Integral Test. The Ratio Test also works.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4 + 1}$$

Since the series is alternating, we use the Alternating Series Test.

$$\sum_{k=1}^{\infty} \frac{2^k}{k!}$$

Since the series involves k!, we use the Ratio Test.

$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

Since the series is closely related to the geometric series $\sum 1/3^n$, we use the Comparison Test.

Exercises

1-38 Test the series for convergence or divergence.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n+3^n}$$

11.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{3^n} \right)$$

12.
$$\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k^2+1}}$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 2}$$

2. $\sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}}$

13.
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

14.
$$\sum_{n=1}^{\infty} \frac{\sin 2n}{1+2^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n-1}}{(-5)^n}$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

15.
$$\sum_{k=1}^{\infty} \frac{2^{k-1}3^{k+1}}{k^k}$$

16.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

7.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

8.
$$\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!}$$

17.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n-1)}$$

9.
$$\sum_{k=1}^{\infty} k^2 e^{-k}$$

10.
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$

18.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$$

19.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

20.
$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k} - 1}{k(\sqrt{k} + 1)}$$

29.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\cosh n}$$

30.
$$\sum_{j=1}^{\infty} (-1)^j \frac{\sqrt{j}}{j+5}$$

21.
$$\sum_{n=1}^{\infty} (-1)^n \cos(1/n^2)$$

22.
$$\sum_{k=1}^{\infty} \frac{1}{2 + \sin k}$$

$$31. \sum_{k=1}^{\infty} \frac{5^k}{3^k + 4^k}$$

32.
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{4n}}$$

23.
$$\sum_{n=1}^{\infty} \tan(1/n)$$

24.
$$\sum_{n=1}^{\infty} n \sin(1/n)$$

$$33. \sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

34.
$$\sum_{n=1}^{\infty} \frac{1}{n + n \cos^2 n}$$

$$25. \sum_{n=1}^{\infty} \frac{n!}{e^{n!}}$$

26.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$

35.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

36.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$

27.
$$\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^3}$$

28.
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

37.
$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)^n$$

38.
$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$$

Power Series

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the **coefficients** of the series. For each fixed x, the series $\boxed{1}$ is a series of constants that we can test for convergence or divergence. A power series may converge for some values of x and diverge for other values of x. The sum of the series is a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots$$

whose domain is the set of all x for which the series converges. Notice that f resembles a polynomial. The only difference is that f has infinitely many terms.

For instance, if we take $c_n = 1$ for all n, the power series becomes the geometric series

$$\sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + \dots + x^{n} + \dots$$

which converges when -1 < x < 1 and diverges when $|x| \ge 1$. (See Equation 11.2.5.) More generally, a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$

is called a power series in (x - a) or a power series centered at a or a power series about a. Notice that in writing out the term corresponding to n = 0 in Equations 1 and 2 we have adopted the convention that $(x - a)^0 = 1$ even when x = a. Notice also that when x = aall of the terms are 0 for $n \ge 1$ and so the power series 2 always converges when x = a.

For what values of x is the series $\sum_{n=1}^{\infty} n! x^n$ convergent?

We use the Ratio Test. If we let a_n , as usual, denote the *n*th term of the series, then $a_n = n! x^n$. If $x \neq 0$, we have

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = \lim_{n \to \infty} (n+1) |x| = \infty$$

Trigonometric Series

A power agries is a series in which each term is a power teaction. A trigonometric series

$$\sum (a_n \cos nx + b_n \sin nx)$$

is a serie: whose terms are trigonometric functions. This type of series is discussed on the website

vww.stewartcalculus.com

Click on A ditional Topics and then on Fourier Series

$$(n+1)^n = (n+1)n(n-1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$$

= $(n+1)n!$