720 CHAPTER 11 INFINITE SEQUENCES AND SERIES

| Proof of the Integral Test

4 Y =) We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2 for the series 3 1/n% and S 1/+/n. For the general series S a,, look at Figures 5 and 6. The
area of the first shaded rectangle in Figure 5 is the value of f at the right endpoint of [1, 2],
j that is, f(2) = a,. So, comparing the areas of the shaded rectangles with the area under
I~
y = f(x) from 1 to n, we see that
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FIGURE 5 . . . . ; ; ; ;
(Notice that this inequality depends on the fact that f is decreasing.) Likewise, Figure 6
shows that
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(i) If ’le F(x) dx is convergent, then [4] gives

Yoa< jnf(x) dx < J‘xf(x) dx
i=2 X !

FIGURE 6

since f(x) = 0. Therefore

Sc=a1+ Y a<a + j.:f(x) dx = M, say

=2
Since s, = M for all n, the sequence {s, } is bounded above. Also
Sn+1 = Sn T Aus1 = Sy

since dn+1 = f(n + 1) = 0. Thus {s,} is an increasing bounded sequence and so it is con-
vergent by the Monotonic Sequence Theorem (11.1.12). This means that > a, is convergent.

(ii) If [} f(x) dx is divergent, then |7 f(x) dx — % as n — o because f (x) = 0. But
gives

n—1

flnf(x) dx < D, a; = Su-1

i=1

and so §,-; — . This implies that s, — o and so £ a, diverges.

Exercises
1. Draw a picture to show that 3-8 Use the Integral Test to determine whether the series is
= 1 convergent or divergent.
2 I f 5 dx = =
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What can you conclude about the series? et Ve n=l
. i ; ; a 1 = 1
2. Suppose f is a continuous positive decreasing function for LD — 6. O ———
x = 1 and a, = f(n). By drawing a picture, rank the following = (20 + 1) w1 /n 4
three quantities in increasing order: ; i n . s g
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% ~=-ermine whether the series is convergent or divergent.
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27-28 Explain why the Integral Test can’t be used to determine
whether the series is convergent.

o

21. 3,
n=1

Cos Tn

i

5 cos’n
28. —
,;1 1+ 7’[

29-32 Find the values of p for which the series is convergent.
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33. The Riemann zeta-function ¢ is defined by

x

{x) =

n=1 n*

and is used in number theory to study the distribution of prime
numbers. What is the domain of {?
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS
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Leonhard Euler was able to calculate the exact sum of the
p-series with p = 2:
| 7’
[2) = 2 =
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(See page 715.) Use this fact to find the sum of each series.
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Euler also found the sum of the p-series with p = 4:
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Use Euler’s result to find the sum of the series.
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(a) Find the partial sum sy, of the series 25—, 1/ n*. Estimate the
error in using sip as an approximation to the sum of the
series.

(b) Use [3] with n = 10 to give an improved estimate of the
SUm.

(c) Compare your estimate in part (b) with the exact value
given in Exercise 35.

(d) Find a value of 7 so that s,, is within 0.00001 of the sum.

. (2) Use the sum of the first 10 terms to estimate the sum of the

series 3= 1/n% How good is this estimate?

(b) Improve this estimate using [3] with n = 10.

(c) Compare your estimate in part (b) with the exact value
given in Exercise 34.

(d) Find a value of n that will ensure that the error in the
approximation s = s, is less than 0.001.

Find the sum of the series Si—; 1/n° correct to three decimal
places.
Estimate Si—; (2 + 1)~ correct to five decimal places.

How many terms of the series 5= 1/[n(In n)*] would you
need to add to find its sum to within 0.017

Show that if we want to approximate the sum of the series
Si_ n ' g0 that the error is less than 5 in the ninth decimal
place, then we need to add more than 10'**" terms!

(a) Show that the series =i, (In n)?/n” is convergent.

(b) Find an upper bound for the error in the approximation
$ = 5.

(c) What is the smallest value of n such that this upper bound
is less than 0.057

(d) Find s, for this value of .




