

FIGURE 5

FIGURE 6

Proof of the Integral Test

We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 2 for the series $\sum 1/n^2$ and $\sum 1/\sqrt{n}$. For the general series $\sum a_n$, look at Figures 5 and 6. The area of the first shaded rectangle in Figure 5 is the value of f at the right endpoint of [1, 2], that is, $f(2) = a_2$. So, comparing the areas of the shaded rectangles with the area under y = f(x) from 1 to n, we see that

$$a_2 + a_3 + \cdots + a_n \leq \int_1^n f(x) \, dx$$

(Notice that this inequality depends on the fact that f is decreasing.) Likewise, Figure 6 shows that

$$\int_{1}^{n} f(x) \, dx \le a_{1} + a_{2} + \dots + a_{n-1}$$

(i) If $\int_{1}^{\infty} f(x) dx$ is convergent, then 4 gives

$$\sum_{i=2}^{n} a_i \le \int_1^n f(x) \, dx \le \int_1^{\infty} f(x) \, dx$$

since $f(x) \ge 0$. Therefore

$$s_n = a_1 + \sum_{i=2}^n a_i \le a_1 + \int_1^\infty f(x) \, dx = M$$
, say

Since $s_n \le M$ for all n, the sequence $\{s_n\}$ is bounded above. Also

$$s_{n+1} = s_n + a_{n+1} \geqslant s_n$$

since $a_{n+1} = f(n+1) \ge 0$. Thus $\{s_n\}$ is an increasing bounded sequence and so it is convergent by the Monotonic Sequence Theorem (11.1.12). This means that $\sum a_n$ is convergent.

(ii) If $\int_1^\infty f(x) dx$ is divergent, then $\int_1^n f(x) dx \to \infty$ as $n \to \infty$ because $f(x) \ge 0$. But $\boxed{5}$ gives

$$\int_{1}^{n} f(x) \, dx \le \sum_{i=1}^{n-1} a_{i} = s_{n-1}$$

and so $s_{n-1} \to \infty$. This implies that $s_n \to \infty$ and so Σ a_n diverges.

iil3

Exercises

1. Draw a picture to show that

$$\sum_{n=2}^{\infty} \frac{1}{n^{1.3}} < \int_{1}^{\infty} \frac{1}{x^{1.3}} \, dx$$

What can you conclude about the series?

2. Suppose f is a continuous positive decreasing function for $x \ge 1$ and $a_n = f(n)$. By drawing a picture, rank the following three quantities in increasing order:

$$\int_{1}^{6} f(x) dx \qquad \sum_{i=1}^{5} a_{i} \qquad \sum_{i=2}^{6} a_{i}$$

3-8 Use the Integral Test to determine whether the series is convergent or divergent.

3. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$

- **4.** $\sum_{n=1}^{\infty} \frac{1}{n^5}$
- $5. \sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$
- **6.** $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$

7. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$

8. $\sum_{n=1}^{\infty} n^2 e^{-n^3}$

1. Homework Hints available at stewartcalculus.com

$$\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}$$

10.
$$\sum_{n=0.9999}^{\infty} n^{-0.9999}$$

11.
$$1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \cdots$$

12.
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \cdots$$

13.
$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \cdots$$

14.
$$\frac{1}{5} + \frac{1}{8} + \frac{1}{11} + \frac{1}{14} + \frac{1}{17} + \cdots$$

15.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n} + 4}{n^2}$$

16.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$

17.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

18.
$$\sum_{n=3}^{\infty} \frac{3n-4}{n^2-2n}$$

19.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

20.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13}$$

$$21. \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

22.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

23.
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

24.
$$\sum_{n=3}^{\infty} \frac{n^2}{e^n}$$

25.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3}$$

26.
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

27-28 Explain why the Integral Test can't be used to determine whether the series is convergent.

27.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{\sqrt{n}}$$

28.
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}$$

29–32 Find the values of p for which the series is convergent.

29.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

30.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n \left[\ln(\ln n) \right]^p}$$

31.
$$\sum_{n=1}^{\infty} n(1+n^2)^p$$

$$32. \sum_{n=1}^{\infty} \frac{\ln n}{n^p}$$

33. The Riemann zeta-function ζ is defined by

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

and is used in number theory to study the distribution of prime numbers. What is the domain of ζ ?

34. Leonhard Euler was able to calculate the exact sum of the p-series with p = 2:

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(See page 715.) Use this fact to find the sum of each series.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n^2}$$

(b)
$$\sum_{n=3}^{\infty} \frac{1}{(n+1)^2}$$

721

(c)
$$\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$$

35. Euler also found the sum of the *p*-series with p = 4:

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Use Euler's result to find the sum of the series.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{3}{n} \right)^4$$

(b)
$$\sum_{k=5}^{\infty} \frac{1}{(k-2)^4}$$

36. (a) Find the partial sum s₁0 of the series ∑_{n=1}[∞] 1/n⁴. Estimate the error in using s₁0 as an approximation to the sum of the series.

(b) Use $\boxed{3}$ with n = 10 to give an improved estimate of the sum.

(c) Compare your estimate in part (b) with the exact value given in Exercise 35.

(d) Find a value of n so that s_n is within 0.00001 of the sum.

37. (a) Use the sum of the first 10 terms to estimate the sum of the series $\sum_{n=1}^{\infty} 1/n^2$. How good is this estimate?

(b) Improve this estimate using $\boxed{3}$ with n = 10.

(c) Compare your estimate in part (b) with the exact value given in Exercise 34.

(d) Find a value of *n* that will ensure that the error in the approximation $s \approx s_n$ is less than 0.001.

38. Find the sum of the series $\sum_{n=1}^{\infty} 1/n^5$ correct to three decimal places.

39. Estimate $\sum_{n=1}^{\infty} (2n+1)^{-6}$ correct to five decimal places.

40. How many terms of the series $\sum_{n=2}^{\infty} 1/[n(\ln n)^2]$ would you need to add to find its sum to within 0.01?

41. Show that if we want to approximate the sum of the series $\sum_{n=1}^{\infty} n^{-1.001}$ so that the error is less than 5 in the ninth decimal place, then we need to add more than $10^{11,301}$ terms!

 $\overline{\mathbb{C}AS}$ 42. (a) Show that the series $\sum_{n=1}^{\infty} (\ln n)^2/n^2$ is convergent.

(b) Find an upper bound for the error in the approximation $s \approx s_n$.

(c) What is the smallest value of n such that this upper bound is less than 0.05?

(d) Find s_n for this value of n.