11.10 Exercises

If $f(x) = \sum_{n=0}^{\infty} b_n(x-5)^n$ for all x, write a formula for b_8 .

2. The graph of f is shown.

(a) Explain why the series

$$1.6 - 0.8(x - 1) + 0.4(x - 1)^2 - 0.1(x - 1)^3 + \cdots$$

is *not* the Taylor series of f centered at 1.

(b) Explain why the series

$$2.8 + 0.5(x - 2) + 1.5(x - 2)^2 - 0.1(x - 2)^3 + \cdots$$

is *not* the Taylor series of f centered at 2.

If $f^{(n)}(0) = (n+1)!$ for n = 0, 1, 2, ..., find the Maclaurin series for f and its radius of convergence.

♣ Find the Taylor series for f centered at 4 if

$$f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$$

What is the radius of convergence of the Taylor series?

5-12 Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.] Also find the associated radius of convergence.

5.
$$f(x) = (1 - x)^{-2}$$

6.
$$f(x) = \ln(1 + x)$$

7.
$$f(x) = \sin \pi x$$

8.
$$f(x) = e^{-2x}$$

9.
$$f(x) = 2^x$$

$$10. \ f(x) = x \cos x$$

If
$$f(x) = \sinh x$$

$$12. \ f(x) = \cosh x$$

13-20 Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.] Also find the associated radius of convergence.

13.
$$f(x) = x^4 - 3x^2 + 1$$
, $a = 1$

14.
$$f(x) = x - x^3$$
, $a = -2$

15.
$$f(x) = \ln x$$
, $a = 2$

16.
$$f(x) = 1/x$$
, $a = -3$

17.
$$f(x) = e^{2x}$$
, $a = 3$

18.
$$f(x) = \sin x$$
, $a = \pi/2$

$$18. \ f(x) = \cos x, \quad a = \pi$$

20.
$$f(x) = \sqrt{x}$$
, $a = 16$

21. Prove that the series obtained in Exercise 7 represents $\sin \pi x$ for all x.

22. Prove that the series obtained in Exercise 18 represents $\sin x$ for all x.

23. Prove that the series obtained in Exercise 11 represents sinh x for all x.

24. Prove that the series obtained in Exercise 12 represents cosh x for all x.

25–28 Use the binomial series to expand the function as a power series. State the radius of convergence.

25.
$$\sqrt[4]{1-x}$$

26.
$$\sqrt[3]{8+x}$$

$$-27. \frac{1}{(2+x)^3}$$

28.
$$(1-x)^{2/3}$$

29-38 Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the given function.

29.
$$f(x) = \sin \pi x$$

30.
$$f(x) = \cos(\pi x/2)$$

31.
$$f(x) = e^x + e^{2x}$$

32.
$$f(x) = e^x + 2e^{-x}$$

33.
$$f(x) = x \cos(\frac{1}{2}x^2)$$

34.
$$f(x) = x^2 \ln(1 + x^3)$$

35.
$$f(x) = \frac{x}{\sqrt{4 + x^2}}$$

36.
$$f(x) = \frac{x^2}{\sqrt{2+x}}$$

37.
$$f(x) = \sin^2 x$$
 [Hint: Use $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.]

38.
$$f(x) = \begin{cases} \frac{x - \sin x}{x^3} & \text{if } x \neq 0 \\ \frac{1}{6} & \text{if } x = 0 \end{cases}$$

39.
$$f(x) = \cos(x^2)$$

40.
$$f(x) = e^{-x^2} + \cos x$$

41.
$$f(x) = xe^{-x}$$

42.
$$f(x) = \tan^{-1}(x^3)$$

43. Use the Maclaurin series for $\cos x$ to compute $\cos 5^{\circ}$ correct to five decimal places.

44. Use the Maclaurin series for e^x to calculate $1/\sqrt[10]{e}$ correct to five decimal places.

45. (a) Use the binomial series to expand $1/\sqrt{1-x^2}$.

(b) Use part (a) to find the Maclaurin series for $\sin^{-1}x$.

46. (a) Expand $1/\sqrt[4]{1+x}$ as a power series.

(b) Use part (a) to estimate $1/\sqrt[4]{1.1}$ correct to three decimal places.

47-50 Evaluate the indefinite integral as an infinite series.

$$47. \int x \cos(x^3) dx$$

$$48. \int \frac{e^x - 1}{x} dx$$

49.
$$\int \frac{\cos x - 1}{x} dx$$

50.
$$\int \arctan(x^2) dx$$

51-54 Use series to approximate the definite integral to within the indicated accuracy.

51.
$$\int_0^{1/2} x^3 \arctan x \, dx$$
 (four decimal places)

52.
$$\int_0^1 \sin(x^4) dx$$
 (four decimal places)

53.
$$\int_0^{0.4} \sqrt{1 + x^4} \, dx \quad (|\text{error}| < 5 \times 10^{-6})$$

54.
$$\int_0^{0.5} x^2 e^{-x^2} dx$$
 (| error | < 0.001)

55-57 Use series to evaluate the limit.

55.
$$\lim_{x\to 0} \frac{x - \ln(1+x)}{x^2}$$

56.
$$\lim_{x\to 0} \frac{1-\cos x}{1+x-e^x}$$

57.
$$\lim_{x\to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}$$

58. Use the series in Example 13(b) to evaluate

$$\lim_{x\to 0}\frac{\tan x-x}{x^3}$$

We found this limit in Example 4 in Section 4.4 using l'Hospital's Rule three times. Which method do you prefer?

59-62 Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for each function.

59.
$$y = e^{-x^2} \cos x$$

60.
$$y = \sec x$$

$$61. \ y = \frac{x}{\sin x}$$

62.
$$y = e^x \ln(1 + x)$$

63-70 Find the sum of the series.

63.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$$

64.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$

65.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n \cdot 5^n}$$

66.
$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

67.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{4^{2n+1} (2n+1)!}$$

68.
$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \cdots$$

69.
$$3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \cdots$$

70.
$$\frac{1}{1\cdot 2} - \frac{1}{3\cdot 2^3} + \frac{1}{5\cdot 2^5} - \frac{1}{7\cdot 2^7} + \cdots$$

71. Show that if p is an nth-degree polynomial, then

$$p(x + 1) = \sum_{i=0}^{n} \frac{p^{(i)}(x)}{i!}$$

72. If
$$f(x) = (1 + x^3)^{30}$$
, what is $f^{(58)}(0)$?

73. Prove Taylor's Inequality for n = 2, that is, prove that if $|f'''(x)| \le M$ for $|x - a| \le d$, then

$$|R_2(x)| \le \frac{M}{6}|x-a|^3$$
 for $|x-a| \le d$

74. (a) Show that the function defined by

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

is not equal to its Maclaurin series.

(b) Graph the function in part (a) and comment on its behavior near the origin.

75. Use the following steps to prove 17.

M

(a) Let $g(x) = \sum_{n=0}^{\infty} {k \choose n} x^n$. Differentiate this series to show that

$$g'(x) = \frac{kg(x)}{1+x}$$
 $-1 < x < 1$

(b) Let $h(x) = (1 + x)^{-k} g(x)$ and show that h'(x) = 0.

(c) Deduce that $q(x) = (1 + x)^k$.

76. In Exercise 53 in Section 10.2 it was shown that the length of the ellipse $x = a \sin \theta$, $y = b \cos \theta$, where a > b > 0, is

$$L = 4a \int_0^{\pi/2} \sqrt{1 - e^2 \sin^2 \theta} \ d\theta$$

where $e = \sqrt{a^2 - b^2}/a$ is the eccentricity of the ellipse.

Expand the integrand as a binomial series and use the result of Exercise 50 in Section 7.1 to express L as a series in powers of the eccentricity up to the term in e^6 .