Solutions of Assignment # 9.

Problem 1. Is the following (improper) integral convergent?
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(indeed, apply definition of the limit with ¢ = 1/2). Therefore, for every = € (0, 6)

sin x

1
> —.
x? T 2
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Answer.
a. convergent b. divergent



Problem 2. Find the following integral (or explain why it does not exist)
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Solution.
a. Using integration by parts with « = Inx, dv = dx we obtain

/ln:t:dx:xln:c—x—l—C.

Thus

1 1
/ Inz dx:(xlnx—x)‘ =lim (Inl—-1—-zlnz)=—-1- lim (zlnz) = —1
0

0 z—0t z—07t
(we used here Problem 4c from H/A 6, where applying L’Hospital Rule we proved that xlnz — 0
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Note that in fact we deal here with improper integral and that we are using that arcsin is a
continuous function. Namely,
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Problem 3. Let a € R. Let f, g be non-negative functions defined on [a, 00). Assume that for
every b € |a,00) the functions f, g are bounded and integrable on [a,b]. Assume also that

lim % =L <00 and / g(x) dx is convergent.
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Prove that N
/ f(z) dx is convergent.



Proof.  First note that given b > a,
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if and only if
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Indeed, ¢ is non-negative, so fabg(x) dxr > 0 and
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we observe that there exists M > a such that for every x > M one has f(z)/g(z) < L+ 1 (indeed,

apply definition of the limit with ¢ = 1). Denote
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Now, since

It is given that f is integrable on [a, M], so I} < co. We have also observed I, < I3 < oo.
By the Comparison Theorem we observe
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It means that



