Solutions of Assignment # 9.

Problem 1. Is the following (improper) integral convergent?

a.
$$\int_1^\infty \frac{\arctan x}{x^2} dx$$
 b. $\int_0^1 \frac{\sin x}{x^2} dx$

Solution.

a. Since for $x \ge 1$

$$0 \le \frac{\arctan x}{x^2} \le \frac{\pi}{2x^2}$$

and

$$\int_{1}^{\infty} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{1}^{\infty} = -\lim_{x \to \infty} \left(\frac{1}{x} - 1\right) = 1,$$

by the Comparison Theorem we obtain that

$$\int_{1}^{\infty} \frac{\arctan x}{x^2} \, dx$$

is convergent. Moreover,

$$\int_{1}^{\infty} \frac{\arctan x}{x^2} \, dx \le \frac{\pi}{2}.$$

b. Note

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

It implies that there exists $\delta \in (0, 1)$ such that for every $x \in (0, \delta)$

$$\frac{\sin x}{x} \ge \frac{1}{2}$$

(indeed, apply definition of the limit with $\varepsilon = 1/2$). Therefore, for every $x \in (0, \delta)$

$$\frac{\sin x}{x^2} \ge \frac{1}{2x}.$$

Now, define $g(x) = \frac{1}{2x}$ on $(0, \delta)$ and g(x) = 0 otherwise. We have for every $x \in (0, 1]$

$$\frac{\sin x}{x^2} \ge g(x)$$

and

$$\int_0^1 g(x) \, dx = \int_0^\delta \frac{1}{2x} \, dx = \frac{1}{2} \, \ln x \Big|_0^\delta = \lim_{x \to 0^+} \frac{\ln \delta - \ln x}{2} = \infty.$$

By the Comparison Theorem, we obtain that

$$\int_0^1 \frac{\sin x}{x^2} = \infty$$

Answer.

a. convergent **b.** divergent

Problem 2. Find the following integral (or explain why it does not exist)

a.
$$\int_0^1 \ln x \, dx$$
 b. $\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx$ **c.** $\int_{-1}^1 \frac{1}{x^2} \, dx$

Solution.

a. Using integration by parts with $u = \ln x$, dv = dx we obtain

$$\int \ln x \, dx = x \ln x - x + C.$$

Thus

b.

$$\int_0^1 \ln x \, dx = (x \ln x - x) \Big|_0^1 = \lim_{x \to 0^+} (\ln 1 - 1 - x \ln x) = -1 - \lim_{x \to 0^+} (x \ln x) = -1$$

(we used here Problem 4c from H/A 6, where applying L'Hospital Rule we proved that $x \ln x \to 0$ as $x \to 0^+$.)

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x \Big|_0^1 = \arcsin 1 - \arcsin 0 = \frac{\pi}{2}.$$

Note that in fact we deal here with improper integral and that we are using that arcsin is a continuous function. Namely,

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \lim_{t \to 1} \int_0^t \frac{1}{\sqrt{1-x^2}} \, dx = \lim_{t \to 1} \arcsin x \Big|_0^t = \arcsin x \Big|_0^1.$$

c. We have

$$\int_0^1 \frac{1}{x^2} dx = -\frac{1}{x} \Big|_0^1 = \lim_{t \to 0^+} \left(-1 + \frac{1}{x} \right) = \infty$$

and

Thus

$$\int_{-1}^{0} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{-1}^{0} = \lim_{t \to 0^{-}} \left(-\frac{1}{x} + 1 \right) = \infty.$$
$$\int_{-1}^{1} \frac{1}{x^2} dx = \infty.$$

Answer.

$$\int_0^1 \ln x \, dx = -1, \qquad \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2}, \qquad \int_{-1}^1 \frac{1}{x^2} \, dx = \infty.$$

Problem 3. Let $a \in \mathbb{R}$. Let f, g be non-negative functions defined on $[a, \infty)$. Assume that for every $b \in [a, \infty)$ the functions f, g are bounded and integrable on [a, b]. Assume also that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L < \infty \qquad \text{and} \qquad \int_a^\infty g(x) \, dx \text{ is convergent.}$$

Prove that

$$\int_{a}^{\infty} f(x) \ dx$$
 is convergent.

Proof. First note that given b > a,

$$\int_{a}^{\infty} g(x) \ dx$$
 is convergent.

if and only if

$$\int_{b}^{\infty} g(x) \ dx$$
 is convergent.

Moreover

$$\int_{b}^{\infty} g(x) \, dx \le \int_{a}^{\infty} g(x) \, dx.$$

Indeed, g is non-negative, so $\int_a^b g(x) \, dx \ge 0$ and

$$\int_{a}^{\infty} g(x) \, dx = \int_{a}^{b} g(x) \, dx + \int_{b}^{\infty} g(x) \, dx.$$

Now, since

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=L<\infty$$

we observe that there exists $M \ge a$ such that for every $x \ge M$ one has $f(x)/g(x) \le L+1$ (indeed, apply definition of the limit with $\varepsilon = 1$). Denote

$$I_1 = \int_a^M f(x) \, dx, \qquad I_2 = \int_M^\infty g(x) \, dx, \qquad I_3 = \int_a^\infty g(x) \, dx.$$

It is given that f is integrable on [a, M], so $I_1 < \infty$. We have also observed $I_2 \leq I_3 < \infty$.

By the Comparison Theorem we observe

$$\int_{a}^{\infty} f(x) \, dx = \int_{a}^{M} f(x) \, dx + \int_{M}^{\infty} f(x) \, dx \le I_1 + \int_{M}^{\infty} (L+1)g(x) \, dx = I_1 + (L+1)I_2 < \infty.$$

It means that

$$\int_{a}^{\infty} f(x) \ dx$$

is convergent.

	-	
	L	
	L	
	L	