Solutions of Assignment # 6.

Problem 1. Show that for every x > 0 one has $(1 + x)^{1/x} < e$. Solution. Since $\ln x$ is a strictly increasing we have for every x > 0

$$(1+x)^{1/x} < e \Leftrightarrow \frac{1}{x} \ln(1+x) < \ln e = 1 \Leftrightarrow \ln(1+x) < x \Leftrightarrow x - \ln(1+x) > 0.$$

Consider the function $f(x) = x - \ln(1+x)$. Then f is continuous on $[0, \infty)$ and

$$f'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0$$

for every x > 0. Thus f is strictly increasing and therefore

$$f(x) > f(0) = 0$$

for every x > 0. This concludes the proof.

Problem 2. Show that for every x > 1 one has $\ln(x + \sqrt{x^2 - 1}) = -\ln(x - \sqrt{x^2 - 1})$. **Solution.** Using properties of logarithmic function we have $\ln(x + \sqrt{x^2 - 1}) + \ln(x - \sqrt{x^2 - 1}) = \ln((x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1})) = \ln(x^2 - (x^2 - 1)) = \ln 1 = 0$, which proves the equality.

Problem 3. Differentiate

a. $(\ln x)^{\cos x}$ **b.** $(\sin x)^{\ln x}$

Solution. Either using logarithmic differentiation (and Chain rule) saying that

$$(\ln F)' = \frac{F'}{F}$$

or the presentation

$$F = e^{\ln F}$$

(and again Chain rule), we observe

$$F' = F(\ln F)'.$$

Applying that to $F = f^g$ we have $(f^g)' = f^g(g \ln f)'$. a.

$$\frac{d}{dx} (\ln x)^{\cos x} = (\ln x)^{\cos x} (\cos x \ln \ln x)' = (\ln x)^{\cos x} \left(-\sin x \ln \ln x + \cos x \frac{1}{\ln x} \frac{1}{x} \right)$$

b.

$$\frac{d}{dx} (\sin x)^{\ln x} = (\sin x)^{\ln x} (\ln x \, \ln \sin x)' = (\sin x)^{\ln x} \left(\frac{1}{x} \, \ln \sin x + \ln x \, \frac{1}{\sin x} \, \cos x\right).$$

Problem 4. Find the following limits (if exist).

a. $\lim_{x \to 0} (\cos x)^{1/\sin^2 x}$ **b.** $\lim_{x \to \infty} (x)^{1/\ln x}$ **c.** $\lim_{x \to 0^+} (x)^x$.

Solution. In this solution we use the following notation $\exp x = e^x$. **a.** Take logarithm of the expression and note that we have an indeterminate form of type $\frac{0}{0}$. Then, applying L'Hospital Rule we observe

$$\lim_{x \to 0} \ln (\cos x)^{1/\sin^2 x} = \lim_{x \to 0} \frac{\ln \cos x}{\sin^2 x} = \lim_{x \to 0} \frac{(\ln \cos x)'}{(\sin^2 x)'} = \lim_{x \to 0} \frac{-\sin x}{\cos x 2 \sin x \cos x} = -\lim_{x \to 0} \frac{1}{2\cos^2 x} = -\frac{1}{2}$$

Since e^x is a continues function and $e^{\ln F} = F$ we obtain

$$\lim_{x \to 0} (\cos x)^{1/\sin^2 x} = \lim_{x \to 0} \exp\left(\ln (\cos x)^{1/\sin^2 x}\right) = \exp\left(\lim_{x \to 0} \ln (\cos x)^{1/\sin^2 x}\right) = e^{-1/2}.$$

b. Note that for every x > 0 we have

$$x^{1/\ln x} = \exp\left(\ln x^{1/\ln x}\right) = \exp\left(\frac{\ln x}{\ln x}\right) = e$$

Thus

$$\lim_{x \to \infty} (x)^{1/\ln x} = e.$$

c. Take logarithm of the expression and note that we have an indeterminate form of type $0 \cdot \infty$. Presenting it as ratio (passing to an indeterminate form of type $\frac{0}{0}$) and applying L'Hospital Rule we observe

$$\lim_{x \to 0^+} \ln (x)^x = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0^+} \frac{(\ln x)'}{(x^{-1})'} = \lim_{x \to 0^+} \frac{1}{-x x^{-2}} = -\lim_{x \to 0^+} x = 0.$$

Since e^x is a continues function and $e^{\ln F} = F$ we obtain

$$\lim_{x \to 0^+} (x)^x = \lim_{x \to 0^+} \exp\left(\ln(x)^x\right) = \exp\left(\lim_{x \to 0^+} \ln(x)^x\right) = e^0 = 1.$$

Answer.

a.
$$\lim_{x \to 0} (\cos x)^{1/\sin^2 x} = 1/\sqrt{e}$$
 b. $\lim_{x \to \infty} (x)^{1/\ln x} = e$ **c.** $\lim_{x \to 0^+} (x)^x = 1$