Solutions of Assignment # 5.

Problem 1. Differentiate
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Problem 2. Let f be a bounded integrable non-negative function on [a, b]. Is it true that
a. f;f(x) dz = 0 implies f(x) = 0 for every z.
b. fab f(z) de =0 and f is continuous on [a, b] implies f(x) = 0 for every z.

Solution.
a. NO. For example let ¢ € [a,b] (any ¢ works for our solution) and consider function f defined by
f(z) =0 for z # c and f(c) = 1. Then it is easy to see that

/abf(x)dx:O

(we did similar examples in class), but f is not identically zero (f(c) = 1).

b. YES. Assume NO, that is assume that there exists a continuous non-negative function f on
la, b] such that f;f(x) dr = 0 and f(c) > 0 for some ¢ € [a,b]. Let ¢ = f(c)/2 > 0. Since f is
continuous, there exists 6 > 0 such that for every x € [¢ — §,¢ + 6] one has f(x) > ¢ (if c = a or
¢ = b we will take the [a,a + d] or [b — 0,b]). Then, since f > 0 we have
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0=/ f(x) dx:/ f(z) der/;r f(z) dz+ +(yf(x) dxz/z f(z) dx>26 >0,

Contradiction. O

Problem 3.  Assume that lim f(z) = L > 0 and lim g(z) = M. Prove that lim f(z)9®) = LM.
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Solution.  The main idea is to use the presentation

f9 = en(f?) — pglnf



First note that applying the definition of limit with ¢ = L/2 we obtain that there exists ¢ such
that for every = € [c — 6, ¢+ 8] one has f(x) > L/2 > 0. Thus on this interval f(x)9®) and In f(z)
are well-defined. Now, using continuity of logarithm we observe

lim(In f(z)) =In L.
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Therefore,

lim (In f(2)?@) = lim(g(z) In f(z)) = (lim g(x)) (limIn f(z)) = MIn L = In LM,
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By continuity of e* we have

lim f(z)9@) = lim /@7 = I — M
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Problem 4. Find domains of the following functions.

a.  f(z) =logy(z—3)+log;(5—x),  b.  g(zr) = log,logslog, z,
c. h(z) = (logztanz)" .

Solution.

a. Since log, b is defined for a > 0,a # 1,0 > 0 the domain of f is defined by x > 3 and = < 5, that
is x € (3,5).

b. We have to require x > 0, log, x > 0, and logs log, x > 0. Equivalently, z > 0, z > 1, log, z > 1.
Equivalently, x > 1 and x > 4. That is x > 4.

c. First, from the definition of log we need tanz > 0. Since a” is defined for a > 0 only, we also

need log stana > 0, that is tanz > 1. Thus we need z € (mn + 7/4,7n + 7/2), for n € Z. O
Answer.
Domf = (3,5), Domg = (4,00), Domh = U(T{'TL + /4, + 7w/2).
nez
Problem 5. Let a > 0, x € R. Prove that
I
a’t=—
aa?
Solution.  We proved in class that a” is a continuous function. Take {p, }°°, such that p, € Q

for every n and p, — x as n — oco. Then —p,, — —x, and by continuity,
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a = lim a " = lim = = —.
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(we used also that the equality holds for rational numbers). a
Remark. There is another way to solve Problem 5, namely using definitions. Recall that for

a > 1 we defined a® as

a®* =sup{a® |peQ, p<z}=inf{a? | ¢€Q, ¢ >z}



(we proved the second equality in the class). Thus we have

" = sup{a? | p€ Q. p < —a} = sup{a” | p € Q, —p >},

Now note, whenever p € QQ then —p € Q, moreover for every q € Q there exists p € Q such

that ¢ = —p. In other words, to take supremum over p € Q, —p > x is the same as to take take
supremum over ¢ € Q, ¢ > x (in fact we use change of variable ¢ = —p: when p runs over Q, ¢ runs
over Q as well). Thus, writing ¢ = —p, we have

a* =sup{a’ [peQ, —p>uz}=sup{a™|qe€Q, ¢>z}.
Now we apply property a9 = 1/a?, known for rational numbers ¢, and properties of supremum and

infimum

1 1
inf{a? | € Q, ¢ >z} a*

,x _ 1
a® =sup{a?]|qeQqQ, q>x}=sup{;]q€@, q>:c}:

It proves the equality for @ > 1. The remaining part (for a € (0, 1]) is simple.



