
Solutions of Assignment # 5.

Problem 1. Differentiate

a.

∫ x

−10

et dt, b.

∫ x2

2

ln t dt, c.

∫ 4

sin x

t2 dt, d.

∫ 1
x

tan x

1

t
dt.

Solution.

a.
d

dx

∫ x

−10

et dt = ex.

b.
d

dx

∫ x2

2

ln t dt = ln x2 (x2)′ = (2 ln x)(2x) = 4x ln x.

c.
d

dx

∫ 4

sin x

t2 dt = − d

dx

∫ sin x

4

t2 dt = −(sin x)2(sin x)′ = −(sin x)2 cos x.

d.
d

dx

∫ 1
x

tan x

1

t
dt =

d

dx

(∫ 1
x

1

1

t
dt−

∫ tan x

1

1

t
dt

)
= x

(
1

x

)′
− (tan x)′

tan x
= −1

x
− 1

sin x cos x
.

2

Problem 2. Let f be a bounded integrable non-negative function on [a, b]. Is it true that

a.
∫ b

a
f(x) dx = 0 implies f(x) = 0 for every x.

b.
∫ b

a
f(x) dx = 0 and f is continuous on [a, b] implies f(x) = 0 for every x.

Solution.
a. NO. For example let c ∈ [a, b] (any c works for our solution) and consider function f defined by
f(x) = 0 for x 6= c and f(c) = 1. Then it is easy to see that∫ b

a

f(x) dx = 0

(we did similar examples in class), but f is not identically zero (f(c) = 1).

b. YES. Assume NO, that is assume that there exists a continuous non-negative function f on
[a, b] such that

∫ b

a
f(x) dx = 0 and f(c) > 0 for some c ∈ [a, b]. Let ε = f(c)/2 > 0. Since f is

continuous, there exists δ > 0 such that for every x ∈ [c − δ, c + δ] one has f(x) > ε (if c = a or
c = b we will take the [a, a + δ] or [b− δ, b]). Then, since f ≥ 0 we have

0 =

∫ b

a

f(x) dx =

∫ c−δ

a

f(x) dx +

∫ c+δ

c−δ

f(x) dx +

∫ b

c+δ

f(x) dx ≥
∫ c+δ

c−δ

f(x) dx ≥ 2δ ε > 0.

Contradiction. 2

Problem 3. Assume that lim
x→a

f(x) = L > 0 and lim
x→a

g(x) = M . Prove that lim
x→a

f(x)g(x) = LM .

Solution. The main idea is to use the presentation

f g = eln(fg) = eg ln f .



First note that applying the definition of limit with ε = L/2 we obtain that there exists δ such
that for every x ∈ [c− δ, c + δ] one has f(x) > L/2 > 0. Thus on this interval f(x)g(x) and ln f(x)
are well-defined. Now, using continuity of logarithm we observe

lim
x→a

(ln f(x)) = ln L.

Therefore,

lim
x→a

(ln f(x)g(x)) = lim
x→a

(g(x) ln f(x)) = (lim
x→a

g(x)) (lim
x→a

ln f(x)) = M ln L = ln LM .

By continuity of ex we have

lim
x→a

f(x)g(x) = lim
x→a

eln f(x)g(x)

= eln LM

= LM .

2

Problem 4. Find domains of the following functions.

a. f(x) = log2(x−3)+log7(5−x), b. g(x) = log2 log3 log4 x,

c. h(x) =
(
log√3 tan x

)π
.

Solution.
a. Since loga b is defined for a > 0, a 6= 1, b > 0 the domain of f is defined by x > 3 and x < 5, that
is x ∈ (3, 5).
b. We have to require x > 0, log4 x > 0, and log3 log4 x > 0. Equivalently, x > 0, x > 1, log4 x > 1.
Equivalently, x > 1 and x > 4. That is x > 4.
c. First, from the definition of log we need tan x > 0. Since aπ is defined for a > 0 only, we also
need log√3 tan x > 0, that is tan x > 1. Thus we need x ∈ (πn + π/4, πn + π/2), for n ∈ Z. 2

Answer.
Domf = (3, 5), Domg = (4,∞), Domh =

⋃
n∈Z

(πn + π/4, πn + π/2).

Problem 5. Let a > 0, x ∈ R. Prove that

a−x =
1

ax
.

Solution. We proved in class that ax is a continuous function. Take {pn}∞n=1 such that pn ∈ Q
for every n and pn → x as n →∞. Then −pn → −x, and by continuity,

a−x = lim
n→∞

a−pn = lim
n→∞

1

apn
=

1

limn→∞ apn
=

1

ax
.

(we used also that the equality holds for rational numbers). 2

Remark. There is another way to solve Problem 5, namely using definitions. Recall that for
a > 1 we defined ax as

ax = sup{ap | p ∈ Q, p < x} = inf{aq | q ∈ Q, q > x}



(we proved the second equality in the class). Thus we have

a−x = sup{ap | p ∈ Q, p < −x} = sup{ap | p ∈ Q, −p > x}.

Now note, whenever p ∈ Q then −p ∈ Q, moreover for every q ∈ Q there exists p ∈ Q such
that q = −p. In other words, to take supremum over p ∈ Q, −p > x is the same as to take take
supremum over q ∈ Q, q > x (in fact we use change of variable q = −p: when p runs over Q, q runs
over Q as well). Thus, writing q = −p, we have

a−x = sup{ap | p ∈ Q, −p > x} = sup{a−q | q ∈ Q, q > x}.

Now we apply property a−q = 1/aq, known for rational numbers q, and properties of supremum and
infimum

a−x = sup{a−q | q ∈ Q, q > x} = sup

{
1

aq
| q ∈ Q, q > x

}
=

1

inf {aq | q ∈ Q, q > x}
=

1

ax
.

It proves the equality for a > 1. The remaining part (for a ∈ (0, 1]) is simple.


