Solutions of Assignment # 5.

Problem 1. Differentiate

a.
$$\int_{-10}^{x} e^{t} dt$$
, **b.** $\int_{2}^{x^{2}} \ln t dt$, **c.** $\int_{\sin x}^{4} t^{2} dt$, **d.** $\int_{\tan x}^{\frac{1}{x}} \frac{1}{t} dt$.

Solution.

a.
$$\frac{d}{dx} \int_{-10}^{x} e^{t} dt = e^{x}$$
.
b. $\frac{d}{dx} \int_{2}^{x^{2}} \ln t dt = \ln x^{2} (x^{2})' = (2 \ln x)(2x) = 4x \ln x$.
c. $\frac{d}{dx} \int_{\sin x}^{4} t^{2} dt = -\frac{d}{dx} \int_{4}^{\sin x} t^{2} dt = -(\sin x)^{2}(\sin x)' = -(\sin x)^{2} \cos x$.
d. $\frac{d}{dx} \int_{\tan x}^{\frac{1}{x}} \frac{1}{t} dt = \frac{d}{dx} \left(\int_{1}^{\frac{1}{x}} \frac{1}{t} dt - \int_{1}^{\tan x} \frac{1}{t} dt \right) = x \left(\frac{1}{x} \right)' - \frac{(\tan x)'}{\tan x} = -\frac{1}{x} - \frac{1}{\sin x \cos x}$.

Problem 2. Let f be a bounded integrable non-negative function on [a, b]. Is it true that **a.** $\int_{a}^{b} f(x) dx = 0$ implies f(x) = 0 for every x.

b. $\int_a^b f(x) \, dx = 0$ and f is continuous on [a, b] implies f(x) = 0 for every x.

Solution.

a. NO. For example let $c \in [a, b]$ (any c works for our solution) and consider function f defined by f(x) = 0 for $x \neq c$ and f(c) = 1. Then it is easy to see that

$$\int_{a}^{b} f(x) \, dx = 0$$

(we did similar examples in class), but f is not identically zero (f(c) = 1).

b. YES. Assume NO, that is assume that there exists a continuous non-negative function f on [a, b] such that $\int_a^b f(x) dx = 0$ and f(c) > 0 for some $c \in [a, b]$. Let $\varepsilon = f(c)/2 > 0$. Since f is continuous, there exists $\delta > 0$ such that for every $x \in [c - \delta, c + \delta]$ one has $f(x) > \varepsilon$ (if c = a or c = b we will take the $[a, a + \delta]$ or $[b - \delta, b]$). Then, since $f \ge 0$ we have

$$0 = \int_{a}^{b} f(x) \, dx = \int_{a}^{c-\delta} f(x) \, dx + \int_{c-\delta}^{c+\delta} f(x) \, dx + \int_{c+\delta}^{b} f(x) \, dx \ge \int_{c-\delta}^{c+\delta} f(x) \, dx \ge 2\delta \, \varepsilon > 0.$$

Intradiction.

Contradiction.

Assume that $\lim_{x \to a} f(x) = L > 0$ and $\lim_{x \to a} g(x) = M$. Prove that $\lim_{x \to a} f(x)^{g(x)} = L^M$. Problem 3. Solution. The main idea is to use the presentation

$$f^g = e^{\ln(f^g)} = e^{g\ln f}$$

First note that applying the definition of limit with $\varepsilon = L/2$ we obtain that there exists δ such that for every $x \in [c - \delta, c + \delta]$ one has f(x) > L/2 > 0. Thus on this interval $f(x)^{g(x)}$ and $\ln f(x)$ are well-defined. Now, using continuity of logarithm we observe

$$\lim_{x \to a} (\ln f(x)) = \ln L.$$

Therefore,

$$\lim_{x \to a} (\ln f(x)^{g(x)}) = \lim_{x \to a} (g(x) \ln f(x)) = (\lim_{x \to a} g(x)) \ (\lim_{x \to a} \ln f(x)) = M \ln L = \ln L^M$$

By continuity of e^x we have

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{\ln f(x)^{g(x)}} = e^{\ln L^M} = L^M.$$

Problem 4. Find domains of the following functions.

a. $f(x) = \log_2(x-3) + \log_7(5-x)$, **b.** $g(x) = \log_2 \log_3 \log_4 x$,

c.
$$h(x) = (\log_{\sqrt{3}} \tan x)^{\pi}$$
.

Solution.

a. Since $\log_a b$ is defined for $a > 0, a \neq 1, b > 0$ the domain of f is defined by x > 3 and x < 5, that is $x \in (3, 5)$.

b. We have to require x > 0, $\log_4 x > 0$, and $\log_3 \log_4 x > 0$. Equivalently, x > 0, x > 1, $\log_4 x > 1$. Equivalently, x > 1 and x > 4. That is x > 4.

c. First, from the definition of log we need $\tan x > 0$. Since a^{π} is defined for a > 0 only, we also need $\log_{\sqrt{3}} \tan x > 0$, that is $\tan x > 1$. Thus we need $x \in (\pi n + \pi/4, \pi n + \pi/2)$, for $n \in \mathbb{Z}$. \Box

Answer.

Dom
$$f = (3, 5)$$
, Dom $g = (4, \infty)$, Dom $h = \bigcup_{n \in \mathbb{Z}} (\pi n + \pi/4, \pi n + \pi/2)$.

Problem 5. Let $a > 0, x \in \mathbb{R}$. Prove that

 $a^{-x} = \frac{1}{a^x}.$

Solution. We proved in class that a^x is a continuous function. Take $\{p_n\}_{n=1}^{\infty}$ such that $p_n \in \mathbb{Q}$ for every n and $p_n \to x$ as $n \to \infty$. Then $-p_n \to -x$, and by continuity,

$$a^{-x} = \lim_{n \to \infty} a^{-p_n} = \lim_{n \to \infty} \frac{1}{a^{p_n}} = \frac{1}{\lim_{n \to \infty} a^{p_n}} = \frac{1}{a^x}.$$

(we used also that the equality holds for rational numbers).

Remark. There is another way to solve Problem 5, namely using definitions. Recall that for a > 1 we defined a^x as

$$a^{x} = \sup\{a^{p} \mid p \in \mathbb{Q}, \ p < x\} = \inf\{a^{q} \mid q \in \mathbb{Q}, \ q > x\}$$

(we proved the second equality in the class). Thus we have

$$a^{-x} = \sup\{a^p \mid p \in \mathbb{Q}, \ p < -x\} = \sup\{a^p \mid p \in \mathbb{Q}, \ -p > x\}.$$

Now note, whenever $p \in \mathbb{Q}$ then $-p \in \mathbb{Q}$, moreover for every $q \in \mathbb{Q}$ there exists $p \in \mathbb{Q}$ such that q = -p. In other words, to take supremum over $p \in \mathbb{Q}$, -p > x is the same as to take take supremum over $q \in \mathbb{Q}$, q > x (in fact we use change of variable q = -p: when p runs over \mathbb{Q} , q runs over \mathbb{Q} as well). Thus, writing q = -p, we have

$$a^{-x} = \sup\{a^p \mid p \in \mathbb{Q}, \ -p > x\} = \sup\{a^{-q} \mid q \in \mathbb{Q}, \ q > x\}.$$

Now we apply property $a^{-q} = 1/a^q$, known for rational numbers q, and properties of supremum and infimum

$$a^{-x} = \sup\{a^{-q} \mid q \in \mathbb{Q}, \ q > x\} = \sup\left\{\frac{1}{a^q} \mid q \in \mathbb{Q}, \ q > x\right\} = \frac{1}{\inf\{a^q \mid q \in \mathbb{Q}, \ q > x\}} = \frac{1}{a^x}.$$

It proves the equality for a > 1. The remaining part (for $a \in (0, 1]$) is simple.