
Solutions of Assignment # 4.

Problem 1. Prove that an increasing function on a closed interval is integrable.

Solution. Let f be an increasing function on an interval [a, b]. For every n ∈ N we choose
partition Pn of [a, b] into intervals of the same length `n = (b− a)/n, that is

x0 = a, x1 = x0 + `n = a + `n, . . . , xi = xi−1 + `n = a + i`n, . . . , xn = a + n`n = b.

Since f is an increasing, we have for every i

mi = inf
[xi−1,xi]

f = f(xi−1), Mi = sup
[xi−1,xi]

f = f(xi).

Therefore, using |xi − xi−1| = `n, we observe

U(Pn, f)− L(Pn, f) =
n∑

i=0

Mi(xi − xi−1)−
n∑

i=0

mi(xi − xi−1) = `n

n∑
i=0

(Mi −mi)

= `n

n∑
i=0

(f(xi)− f(xi−1)) = `n(f(b)− f(a)) =
1

n
(b− a)(f(b)− f(a)) → 0 as n →∞.

Thus for every ε > 0 there exists a partition P (namely, Pn with n satisfying n > (b − a)(f(b) −
f(a))/ε) such that

U(P, f)− L(P, f) < ε.

By the Cauchy criterion this implies that f is integrable. 2

Remark. The proof for a decreasing function repeats the same lines (or one can consider the
function g = −f , which will be increasing, so as we just proved integrable, and apply corresponding
theorem saying that if g is integrable then so is −g).

Problem 2. Prove that every Lipschitz function is uniformly continuous.

Solution. Let f : A → R be a Lipschitz function, that is, there exists C ∈ R such that for every
x, y ∈ Domf one has

|f(x)− f(y)| ≤ C|x− y|.
Fix an arbitrary ε > 0. Choose δ = ε/C. Then for every x, y ∈ Domf with |x− y| < δ we have

|f(x)− f(y)| ≤ C|x− y| < Cδ = ε.

This proves the statement. 2

Problem 3. Is the following function uniformly continuous?

a. f(x) =
√

x on [1,∞) b. f(x) =
√

x on [0,∞).

Solution. We show that the answer is YES for both questions (in fact we need to show it only
for the second question, however the proof in the first case is much simpler). First note that for
every x, y ∈ R satisfying 0 ≤ y ≤ x we have

|f(x)− f(y)| =
√

x−√y =
x− y√
x +

√
y
≤ x− y√

x
.



Thus, if, in addition, x ≥ 1 we have

|f(x)− f(y)| ≤ |x− y|.
It shows that f is Lipschitz on [1,∞) and, by Problem 2, gives answer YES to the first problem
(but not only, note we have this inequality for every x ≥ 1 and every 0 ≤ y ≤ x).

Now we fix an arbitrary ε > 0. Since f is continuous, by the Cantor Theorem, it is uniformly
continuous on [0, 1]. Thus for every ε there exists δ0 > 0 such that for every x, y ∈ [0, 1] with
|x− y| < δ0 we have |f(x)− f(y)| < ε.

Now we choose δ = min{ε, δ0}. For every 0 ≤ y ≤ x with |x− y| < δ we have
Case 1. if x ≥ 1 then

|f(x)− f(y)| ≤ |x− y| < δ ≤ ε;

Case 2. if x ≤ 1 then (since δ ≤ δ0)

|f(x)− f(y)| < ε.

This proves the desired result. 2

Remark 1. Of course we can prove this result without using the Cantor Theorem, namely, just by
providing formula for δ(ε) (Exer.).

Remark 2. If you want to argue like “f is uniformly continuous on [0, 1] and on [1,∞), so f is
uniformly continuous on the union” then first you have to prove such a general statement.

Problem 4. Is the following function a Lipschitz function?

a. f(x) = x2 on [−1, 1] b. f(x) = x2 on [1,∞).

c. f(x) =
√

x on [1,∞) d. f(x) =
√

x on [0, 1].

Solution.
a. YES. Indeed, for every x, y ∈ [−1, 1] one has

|f(x)− f(y)| = |x2 − y2| = |x− y| |x + y| ≤ |x− y| (|x|+ |y|) ≤ 2 |x− y|.

b. NO. Indeed, assume yes. Then there exists a constant C > 1 (if C0 < 1 works then any C > 1
works as well) such that for every x, y ≥ 1

|f(x)− f(y)| = |x2 − y2| ≤ C|x− y|.
Take x = C and y = 2C. Then |x2 − y2| = 3C2, |x− y| = C. Hence

3C2 ≤ C2.

Contradiction.

c. YES. Indeed, for every x, y ∈ [1,∞) one has

|f(x)− f(y)| = |
√

x−√y| = |x− y|√
x +

√
y
≤ |x− y|.

d. NO. Indeed, assume yes. Then there exists a constant C > 1 (if C0 < 1 works then any C > 1
works as well) such that for every x, y ∈ [0, 1]

|f(x)− f(y)| = |
√

x−√y| ≤ C|x− y|.
Take x = 0 and y = 1/(2C)2. Then |

√
x−√y| = 1/(2C) and |x− y| = 1/(2C)2. Hence

1

2C
≤ 1

4C
.

Contradiction. 2


