Solutions of Assignment # 11.

Problem 1.  Find all p > 0 such that the following series is convergent.
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Solution.
a. We use the integral tests. Note that the function f(x) = W

[2,00). Using substitution u = Inz the corresponding integral can be evaluated. For p > 1
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It implies that the series is convergent.
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It implies that the series is divergent.
For p <1
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It implies that the series is divergent.

b. Here we have an alternating series. Note that
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is decreasing and tends to 0 as n — oo. Therefore, by the Altering Test, the series is convergent. O

Answer. a. The series is convergent for p > 1 (divergent for p € (0,1). b. The series is
convergent for every p > 0.

Problem 2.  Does the following series converge?
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Solution.

a. The series is divergent, since the general term does not tend to 0, indeed
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b. We use the limit comparison test.
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we obtain that our series is also divergent.
c. Here we use the Root Test. Since
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we obtain that our series is convergent.

d.
Way 1. Assume that £ = [n/2], that is either n = 2k or n = 2k + 1. Clearly, k¥ < n/2 and for
every n > 2 we have k > n/4 (indeed k > (n — 1)/2 > n/4). We have
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so our series is also convergent. Way 2. We apply Ratio test. Let a,, = n!/n™. Then
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Thus, for n > 2,
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Answer. a. Divergent. b. Divergent. c. Convergent. d. Convergent.



