Solutions of Assignment # 10.

Problem 1. Evaluate the following integral

a.
$$\int_{2}^{\infty} \frac{dx}{\ln x},$$
 b.
$$\int_{0}^{\pi/2} \tan x \ dx,$$
 c.
$$\int_{2}^{\infty} \frac{dx}{x \ln x},$$

d.
$$\int_{1}^{2} \frac{dx}{x \ln x},$$
 e.
$$\int_{2}^{\infty} \frac{dx}{x \ln^{2} x},$$
 f.
$$\int_{1}^{2} \frac{dx}{x \ln^{2} x}.$$

Solution.

a. Note that $\ln x \le x$ for every $x \ge 1$ (in fact for every x > 0). Indeed, consider $f(x) = x - \ln x$. Then $f'(x) = 1 - 1/x \ge 0$, so f is an increasing function. Therefore for every $x \ge 1$ we have $f(x) \ge f(1) = 1 - \ln 1 = 1$. It implies $x \ge \ln x$. Thus for every $x \ge 2$ one has

$$\frac{1}{\ln x} \ge \frac{1}{x}.$$

Note

$$\int_{2}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \ln x \Big|_{2}^{t} = \lim_{t \to \infty} (\ln t - \ln 2) = \infty.$$

By the comparison theorem it implies

$$\int\limits_{2}^{\infty} \frac{1}{\ln x} \ dx = \infty.$$

b. Using substitution $u = \cos x$, $du = \sin x \, dx$ we obtain

$$\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx = \int \frac{-du}{u} = -\ln|u| + C = -\ln|\cos x| + C.$$

Therefore,

$$\int_{0}^{\pi/2} \tan x \, dx = \lim_{t \to \left(\frac{\pi}{2}\right)^{-}} \left(-\ln|\cos x|\right) \Big|_{0}^{t} = \lim_{t \to \left(\frac{\pi}{2}\right)^{-}} \left(-\ln|\cos t| + \ln 1\right) = \infty$$

(we used that $\cos t \to 0$ as $t \to \pi/2$ and $\ln z \to -\infty$ as $z \to 0$).

c. Using substitution $u = \ln x$, $du = \frac{1}{x} dx$ we obtain

$$\int \frac{dx}{x \ln x} = \int \frac{du}{u} = \ln|u| + C = \ln|\ln x| + C.$$

Therefore,

$$\int_{2}^{\infty} \frac{dx}{x \ln x} dx = \lim_{t \to \infty} \left(\ln|\ln x| \right) \Big|_{2}^{t} = \lim_{t \to \infty} \left(\ln|\ln t| - \ln(\ln 2) \right) = \infty$$

(we used that $\ln t \to \infty$ as $t \to \infty$).

d. Using the indefinite integral from the previous problem we have

$$\int_{1}^{2} \frac{dx}{x \ln x} dx = \lim_{t \to 1^{+}} (\ln|\ln x|) \Big|_{t}^{2} = \lim_{t \to 1^{+}} (\ln(\ln 2) - \ln|\ln t|) = \infty$$

(we used that $\ln t \to 0$ as $t \to 1^+$, $\ln t > 0$ for t > 1, and $\ln z \to -\infty$ as $z \to 0^+$).

e. Using substitution $u = \ln x$, $du = \frac{1}{x} dx$ we obtain

$$\int \frac{dx}{x \ln^2 x} = \int \frac{du}{u^2} = -\frac{1}{u} + C = -\frac{1}{\ln x} + C.$$

Therefore,

$$\int\limits_{2}^{\infty} \frac{dx}{x \ln x} \ dx = \lim_{t \to \infty} \left(-\frac{1}{\ln x} \right) \Big|_{2}^{t} = \lim_{t \to \infty} \left(-\frac{1}{\ln t} + \frac{1}{\ln 2} \right) = \frac{1}{\ln 2}$$

(we used that $\ln t \to \infty$ as $t \to \infty$, so $\frac{1}{\ln t} \to 0$ as $t \to \infty$).

f. Using the indefinite integral from the previous problem we have

$$\int_{1}^{2} \frac{dx}{x \ln x} dx = \lim_{t \to 1^{+}} \left(-\frac{1}{\ln x} \right) \Big|_{t}^{2} = \lim_{t \to 1^{+}} \left(-\frac{1}{\ln 2} + \frac{1}{\ln t} \right) = \infty$$

(we used that $\ln t \to 0$ as $t \to 1^+$ and $\ln t > 0$ for t > 1, so $\frac{1}{\ln t} \to \infty$ as $t \to 1^+$). Answer.

$$\mathbf{a.} \quad \int\limits_{0}^{\infty} \frac{dx}{\ln x} = \infty,$$

a.
$$\int_{2}^{\infty} \frac{dx}{\ln x} = \infty,$$
 b.
$$\int_{0}^{\pi/2} \tan x \ dx = \infty,$$
 c.
$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \infty,$$

$$\mathbf{c.} \qquad \int\limits_{2}^{\infty} \frac{dx}{x \ln x} = \infty,$$

$$\mathbf{d.} \qquad \int_{1}^{2} \frac{dx}{x \ln x} = \infty,$$

$$\mathbf{d.} \quad \int_{1}^{2} \frac{dx}{x \ln x} = \infty, \qquad \mathbf{e.} \quad \int_{2}^{\infty} \frac{dx}{x \ln^{2} x} = \frac{1}{\ln 2}, \qquad \mathbf{f.} \quad \int_{1}^{2} \frac{dx}{x \ln^{2} x} = \infty.$$

$$\mathbf{f.} \qquad \int\limits_{1}^{2} \frac{dx}{x \ln^2 x} = \infty.$$