
Quiz # 5

Problem 1. Write out the form of partial fraction decomposition.
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Solution. Since x2 − 1 = (x− 1)(x + 1) we have
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Problem 2. Find a.
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Solution.
a. Note, cos x ≥ 0 on [0, π/2] and cos x ≥ 1/2 on [0, π/3]. Setting f(x) = 1
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f(x) = 0 for x ∈ [π/3, π/2], we observe
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By comparison theorem we obtain
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(we used here that t2 ln t → 0 as t → 0+, which can be proved either using L’Hospital Rule or an
example in the class, saying t ln t→ 0 as t→ 0+). 2

Answer.

a.

π/2∫
0

cos x

x
dx =∞ b.

1∫
0

x ln x dx = −1

4
.

Remark. The choice of π/3 in Problem 2a is not important. Indeed, we can choose (and fix) any
s ∈ (0, π/2). Then cos x ≥ cos s > 0 on [0, s], so
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