Quiz # 2

Problem 1. Provide the definition of a slant asymptote.

Definition. Let $a, b \in \mathbb{R}$, $a \neq 0$. The line y = ax + b is called a slant asymptote of a function f if

$$\lim_{x \to \infty} (f(x) - ax - b) = 0 \qquad \text{or} \qquad \lim_{x \to -\infty} (f(x) - ax - b) = 0.$$

Problem 2. Find the following limits (if exist).

a.
$$\lim_{x \to 0} \frac{x^3}{\sin x - x}$$
 b. $\lim_{x \to \frac{\pi}{4}} \frac{x}{\tan x}$ **c.** $\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sin(x^2 - 1)}$.

Solution.

a. Here we initially have an indeterminate form of the type $\frac{0}{0}$ as well as after applying L'Hospital's Rule twice. So we apply it three times. Note that each time, before applying it, we check the conditions.

$$\lim_{x \to 0} \frac{x^3}{\sin x - x} = \lim_{x \to 0} \frac{3x^2}{\cos x - 1} = \lim_{x \to 0} \frac{6x}{-\sin x} = \lim_{x \to 0} \frac{6}{-\cos x} = -6$$

(in the last equality we used that $\cos is$ a continuous function and $\cos 0 = 1$).

b. We don't have an indeterminate form here, both functions are continuous, hence

$$\lim_{x \to \frac{\pi}{4}} \frac{x}{\tan x} = \frac{\pi/4}{\tan(\pi/4)} = \frac{\pi}{4}$$

c. Here we have an indeterminate form of the type $\frac{0}{0}$. Applying L'Hospital's Rule we obtain

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sin(x^2 - 1)} = \lim_{x \to 1} \frac{1/(2\sqrt{x})}{2x\cos(x^2 - 1)} = \frac{1}{4}$$

(in the last equality we used continuity of corresponding functions).

Answer.

a.
$$\lim_{x \to 0} \frac{x^3}{\sin x - x} = -6$$
, **b.** $\lim_{x \to \frac{\pi}{4}} \frac{x}{\tan x} = \frac{\pi}{4}$, **c.** $\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sin(x^2 - 1)} = \frac{1}{4}$.