11. (a) $f(x) = x^3 - 12x + 1 \implies f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$. We don't need to include "3" in the chart to determine the sign of f'(x).

Interval	x+2	x-2	f'(x)	asgesta vitas f va sa stany
x < -2	1835-y=2003-A		+	increasing on $(-\infty, -2)$
-2 < x < 2	+	- 0.000	a stand	decreasing on $(-2,2)$
x > 2	+	+	+	increasing on $(2, \infty)$

So f is increasing on $(-\infty, -2)$ and $(2, \infty)$ and f is decreasing on (-2, 2).

- (b) f changes from increasing to decreasing at x=-2 and from decreasing to increasing at x=2. Thus, f(-2)=17 is a local maximum value and f(2)=-15 is a local minimum value.
- (c) f''(x) = 6x. $f''(x) > 0 \Leftrightarrow x > 0$ and $f''(x) < 0 \Leftrightarrow x < 0$. Thus, f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$. There is an inflection point where the concavity changes, at (0, f(0)) = (0, 1).
- **12.** (a) $f(x) = 5 3x^2 + x^3 \implies f'(x) = -6x + 3x^2 = 3x(x 2)$. Thus, $f'(x) > 0 \implies x < 0$ or x > 2 and $f'(x) < 0 \implies 0 < x < 2$. So f is increasing on $(-\infty, 0)$ and $(2, \infty)$ and f is decreasing on (0, 2).
 - (b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing at x = 2. Thus, f(0) = 5 is a local maximum value and f(2) = 1 is a local minimum value.
 - (c) f''(x) = -6 + 6x = 6(x 1). $f''(x) > 0 \Leftrightarrow x > 1$ and $f''(x) < 0 \Leftrightarrow x < 1$. Thus, f is concave upward on $(1, \infty)$ and concave downward on $(-\infty, 1)$. There is an inflection point at (1, 3).
- **13.** (a) $f(x) = x^4 2x^2 + 3 \implies f'(x) = 4x^3 4x = 4x(x^2 1) = 4x(x + 1)(x 1)$.

Interval	x+1	x	x-1	f'(x)	f
x < -1	T. Ingent	v so <u>m</u> os i	d hormany i	a gytiLing si	decreasing on $(-\infty, -1)$
$\begin{array}{c} x < 1 \\ -1 < x < 0 \end{array}$		nlar <u>a</u> sign	o ar N <u>u</u> more	(a) + (0) 5	increasing on $(-1,0)$
0 < x < 1	+	+	and Each fil	ge than one	decreasing on $(0,1)$
x > 1	ognada viiv	and to	north-pile side	+ 500	increasing on $(1, \infty)$

So f is increasing on (-1,0) and $(1,\infty)$ and f is decreasing on $(-\infty,-1)$ and (0,1).

- (b) f changes from increasing to decreasing at x=0 and from decreasing to increasing at x=-1 and x=1. Thus, f(0)=3 is a local maximum value and $f(\pm 1)=2$ are local minimum values.
- (c) $f''(x) = 12x^2 4 = 12\left(x^2 \frac{1}{3}\right) = 12\left(x + 1/\sqrt{3}\right)\left(x 1/\sqrt{3}\right)$. $f''(x) > 0 \Leftrightarrow x < -1/\sqrt{3}$ or $x > 1/\sqrt{3}$ and $f''(x) < 0 \Leftrightarrow -1/\sqrt{3} < x < 1/\sqrt{3}$. Thus, f is concave upward on $\left(-\infty, -\sqrt{3}/3\right)$ and $\left(\sqrt{3}/3, \infty\right)$ and concave downward on $\left(-\sqrt{3}/3, \sqrt{3}/3\right)$. There are inflection points at $\left(\pm\sqrt{3}/3, \frac{22}{9}\right)$.
- **14.** (a) $f(x) = \frac{x^2}{x^2 + 3}$ \Rightarrow $f'(x) = \frac{(x^2 + 3)(2x) x^2(2x)}{(x^2 + 3)^2} = \frac{6x}{(x^2 + 3)^2}$. The denominator is positive so the sign of f'(x) is determined by the sign of x. Thus, $f'(x) > 0 \Leftrightarrow x > 0$ and $f'(x) < 0 \Leftrightarrow x < 0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.
 - (b) f changes from decreasing to increasing at x = 0. Thus, f(0) = 0 is a local minimum value.

- (c) f''(x) =
 - f''(x) > and conca
- **15.** (a) f(x) = x $\Leftrightarrow \frac{\pi}{3} <$ increasing
 - (b) f changes

 Thus, $f(\frac{7\pi}{3}) = \frac{1}{3}$
 - (c) f''(x) =upward o and (2π)
- **16.** (a) f(x) = 0 $1 + \sin x$ $\Rightarrow \cos x$ $\Leftrightarrow 0 < 0$
 - (b) f change $f(\pi/2) =$

and $(3\pi/$

- (c) f''(x) = = so f''(x) 0 < x <
- on $(0, \frac{\pi}{6})$
 - First Deri
 - from positive positive at x
 - Second D
 local maximu
 - Preferenc
- **18.** $f(x) = \frac{x}{x^2 + 1}$ First Derivative April 18.
 - from positive positive at x

(c)
$$f''(x) = \frac{(x^2+3)^2(6) - 6x \cdot 2(x^2+3)(2x)}{[(x^2+3)^2]^2} = \frac{6(x^2+3)[x^2+3-4x^2]}{(x^2+3)^4}$$
$$= \frac{6(3-3x^2)}{(x^2+3)^3} = \frac{-18(x+1)(x-1)}{(x^2+3)^3}.$$

 $f''(x) > 0 \Leftrightarrow -1 < x < 1$ and $f''(x) < 0 \Leftrightarrow x < -1$ or x > 1. Thus, f is concave upward on (-1, 1)and concave downward on $(-\infty, -1)$ and $(1, \infty)$. There are inflection points at $(\pm 1, \frac{1}{4})$.

- **15.** (a) $f(x) = x 2\sin x$ on $(0, 3\pi)$ \Rightarrow $f'(x) = 1 2\cos x$. $f'(x) > 0 \Leftrightarrow 1 2\cos x > 0 \Leftrightarrow \cos x < \frac{1}{2}$ $\Leftrightarrow \frac{\pi}{3} < x < \frac{5\pi}{3}$ or $\frac{7\pi}{3} < x < 3\pi$. $f'(x) < 0 \Leftrightarrow \cos x > \frac{1}{2} \Leftrightarrow 0 < x < \frac{\pi}{3}$ or $\frac{5\pi}{3} < x < \frac{7\pi}{3}$. So f is increasing on $(\frac{\pi}{3}, \frac{5\pi}{3})$ and $(\frac{7\pi}{3}, 3\pi)$, and f is decreasing on $(0, \frac{\pi}{3})$ and $(\frac{5\pi}{3}, \frac{7\pi}{3})$.
 - (b) f changes from increasing to decreasing at $x = \frac{5\pi}{3}$, and from decreasing to increasing at $x = \frac{\pi}{3}$ and at $x = \frac{7\pi}{3}$. Thus, $f(\frac{5\pi}{3}) = \frac{5\pi}{3} + \sqrt{3} \approx 6.97$ is a local maximum value and $f(\frac{\pi}{3}) = \frac{\pi}{3} - \sqrt{3} \approx -0.68$ and $f(\frac{7\pi}{3}) = \frac{7\pi}{3} - \sqrt{3} \approx 5.60$ are local minimum values.
 - (c) $f''(x) = 2\sin x > 0 \Leftrightarrow 0 < x < \pi$ and $2\pi < x < 3\pi$, $f''(x) < 0 \Leftrightarrow \pi < x < 2\pi$. Thus, f is concave upward on $(0,\pi)$ and $(2\pi,3\pi)$, and f is concave downward on $(\pi,2\pi)$. There are inflection points at (π,π) and $(2\pi, 2\pi)$.
- **16.** (a) $f(x) = \cos^2 x 2\sin x$, $0 \le x \le 2\pi$. $f'(x) = -2\cos x\sin x 2\cos x = -2\cos x (1+\sin x)$. Note that $1 + \sin x \ge 0$ [since $\sin x \ge -1$], with equality $\Leftrightarrow \sin x = -1 \Leftrightarrow x = 3\pi/2$ [since $0 \le x \le 2\pi$] $\Rightarrow \cos x = 0$. Thus, $f'(x) > 0 \Leftrightarrow \cos x < 0 \Leftrightarrow \pi/2 < x < 3\pi/2$ and $f'(x) < 0 \Leftrightarrow \cos x > 0$ \Leftrightarrow 0 < x < $\pi/2$ or $3\pi/2$ < x < 2π . Thus, f is increasing on $(\pi/2, 3\pi/2)$ and f is decreasing on $(0, \pi/2)$ and $(3\pi/2, 2\pi)$.
 - (b) f changes from decreasing to increasing at $x = \pi/2$ and from increasing to decreasing at $x = 3\pi/2$. Thus, $f(\pi/2) = -2$ is a local minimum value and $f(3\pi/2) = 2$ is a local maximum value.
 - (c) $f''(x) = 2\sin x (1 + \sin x) 2\cos^2 x = 2\sin x + 2\sin^2 x 2(1 \sin^2 x)$ $= 4\sin^2 x + 2\sin x - 2 = 2(2\sin x - 1)(\sin x + 1)$ so $f''(x) > 0 \Leftrightarrow \sin x > \frac{1}{2} \Leftrightarrow \frac{\pi}{6} < x < \frac{5\pi}{6}$, and $f''(x) < 0 \Leftrightarrow \sin x < \frac{1}{2}$ and $\sin x \neq -1 \Leftrightarrow \frac{\pi}{6} < x < \frac{5\pi}{6}$ $0 < x < \frac{\pi}{6}$ or $\frac{5\pi}{6} < x < \frac{3\pi}{2}$ or $\frac{3\pi}{2} < x < 2\pi$. Thus, f is concave upward on $(\frac{\pi}{6}, \frac{5\pi}{6})$ and concave downward on $\left(0, \frac{\pi}{6}\right)$, $\left(\frac{5\pi}{6}, \frac{3\pi}{2}\right)$, and $\left(\frac{3\pi}{2}, 2\pi\right)$. There are inflection points at $\left(\frac{\pi}{6}, -\frac{1}{4}\right)$ and $\left(\frac{5\pi}{6}, -\frac{1}{4}\right)$.
- 17. $f(x) = x^5 5x + 3 \implies f'(x) = 5x^4 5 = 5(x^2 + 1)(x + 1)(x 1)$.

First Derivative Test: $f'(x) < 0 \implies -1 < x < 1$ and $f'(x) > 0 \implies x > 1$ or x < -1. Since f' changes from positive to negative at x = -1, f(-1) = 7 is a local maximum value; and since f' changes from negative to positive at x = 1, f(1) = -1 is a local minimum value.

Second Derivative Test: $f''(x) = 20x^3$. $f'(x) = 0 \Leftrightarrow x = \pm 1$. $f''(-1) = -20 < 0 \Rightarrow f(-1) = 7$ is a local maximum value. $f''(1) = 20 > 0 \implies f(1) = -1$ is a local minimum value.

Preference: For this function, the two tests are equally easy

18.
$$f(x) = \frac{x}{x^2 + 4}$$
 \Rightarrow $f'(x) = \frac{(x^2 + 4) \cdot 1 - x(2x)}{(x^2 + 4)^2} = \frac{4 - x^2}{(x^2 + 4)^2} = \frac{(2 + x)(2 - x)}{(x^2 + 4)^2}.$

First Derivative Test: $f'(x) > 0 \implies -2 < x < 2$ and $f'(x) < 0 \implies x > 2$ or x < -2. Since f' changes from positive to negative at x=2, $f(2)=\frac{1}{4}$ is a local maximum value; and since f' changes from negative to positive at x = -2, $f(-2) = -\frac{1}{4}$ is a local minimum value.

2. Thus,

ard on $(0, \infty)$

<0 or x>2 andon (0, 2).

Thus, f(0) = 5 is

s, f is concave

-1 and x = 1.

 $<-1/\sqrt{3}$ or $-\infty, -\sqrt{3}/3$) and $\sqrt{3}/3, \frac{22}{9}$).

is positive so the sign

x < 0. So f is