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[by (12.2.4) with r = z*] for |2*| <1 &  |z| < 1. Als0 s4n, San+1, San+2 have the same limits (for example,
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S4n = San—1 + coz*™and *™ — 0 for |z| < 1). So if at least one of co, c1, ca, and c3 is nonzero, then the interval
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of convergence is (—1,1) and f(z) =

We use the Root Test on the series Y c,z™. We need lim }/|cpz™| = |z| im {/|cn| = c|z| < 1 for
n—oo n—oo
convergence, or |z| < 1/¢,s0 R =1/c.

Suppose ¢, # 0. Applying the Ratio Test to the series Y ¢, (z — a)™, we find that
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lim |cn/cnt1| # 0), so the series converges when —————— <1 & |z —a| < lim . Thus,
n—oo lim \cn/cn+1| n—o0 | Cp41
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R = lim _If lim |—| = 0and |z — a| # 0, then (%) shows that L = oo and so the series diverges,
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and hence, R = 0. Thus, in all cases, R = lim

n—oo

Cn+1
For2 < & < 3, cnx™ diverges and »_ dnz™ converges. By Exercise 12.2.61, Y (cn + drn) 2™ diverges. Since
both series converge for |z| < 2, the radius of convergence of ) (cy, + dyn) ™ is 2.

Since 3" cnz™ converges whenever |z| < R, 3" cnz®™ = 3 cn(2®)" converges whenever |2°| < R &

|z| < v/R, so the second series has radius of convergence v R.

12.9 Representations of Functions as Power Series

1.

. Our goal is to write the function in the form T

If f(x) = 3. cnz™ has radius of convergence 10, then f'(z) = > nc,z™ * also has radius of convergence 10

n=0 n=1

by Theorem 2.

. If f(z) = Y bpx™ converges on (—2,2), then [ f(z)de =C+ ) %x"*l has the same radius of
n=0 T

n=0
convergence (by Theorem 2), but may not have the same interval of convergence—it may happen that the integrated

series converges at an endpoint (or both endpoints).

1 : e
, and then use Equation (1) to represent the function as a sum of a
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ower series. f(z) = — = —— = —g)" = 1"z with |-z] <1 < .|z|<1,s0R=0
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and I = (—1,1).
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10.

1.

l#* <1 o |2/ < 1,50 R=1and ] = (~1,1). [Note that 3 " («
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converges, so the appropriate condition (from equation (1)) is |w4, <=l10]
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> z". The series converges when fm?’[ <
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)" = 32" with
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1)"3?"z*". The series converges when I~9m2] <k

z". The series converges when
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- The series converges when |—4z| < 1;

[ ( 3 ) 2} - converges when

|z| < 3,50 R=3and I = (-3,3).

e The series converges when

= A(z — 1)+ B(z +2). Taking z = —2, we
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» Replacing z with z* in (1) gives f(z) = e e Yiite
i oo n=0 n=0
s zZPf<1 & le| <¥1 & |o|<1. Thus, R=1andI= (=1,1).
£#) = rom = T = 5 (<95%)" = (-
14922 1—(—922) &, =
that is, when [z| < 3,50 I = (-1, 1).

1 1 1 1= raei : =
o) = e <m> - ngo(g) or equivalently, —nz:%

)%) < 1; thatis, when |z| < 5, s0 I = (=5, 5).
f(ac) - z = 1 = Z (—4:1})" = i (_1)n22nwn+1
3 4z o i (_41') n=0 n=0
that is, when [z| < §,50 I = (-3, 1).
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3 3 A B
o GroE—1) =x18 2ol
get A= —1. Taking z = 1, we get B = 1. Thus,
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We represented the given function as the sum of two geometric series; the first converges for z € (—1,1) and the

second converges for z € (—2,2). Thus, the sum converges for z € (Fll)==F
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dz =,
2n = =1 2 ks n o) n,2n
_1)n(_-';_> ; 22, f(2)-—tan (29:)--2/ﬁ4—$2 _2/;::0(—1) (402 dg =32 Z( 184 5% dx
: 00 __1)n4n 2n+1 oo (_1)n22n+1m2n+1
of the series are =042 ( = LT et S S —tan~10= 01
+ HZO SPRTE) nZ::O e [0} —tan=30=0 50 ¢ 0]
The series converges when [42°| <1 & |z| < 1,50 R=1.Ifz =+ then f(z) = Y (-1)" 2n1+ 7 and
n=0
Fla) = (=1t 1 respectively. Both series converge by the Alternating Series Test.
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As n increases, s, () approximates f better on the interval of convergence, which is [—%, %]
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converges when }tsy <1 <& |t| <1,s0R =1 for that series and also the series for ¢/(1 — t%). By Theorem

2, the series for —
8- Ln 4 3 X in-—1
24, By Example 6, In(1 — t) = —; % for [t| < 1, so w — ~g;1t and
In(1 —t) o "
/—t—dt=C—Z_:1E. By Theorem 2, R = 1.
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