- **9.** (a) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n}{3n+1} = \frac{2}{3}$, so the sequence $\{a_n\}$ is convergent by (12.1.1).
 - (b) Since $\lim_{n\to\infty} a_n = \frac{2}{3} \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ is divergent by the Test for Divergence (7).
- **10.** (a) Both $\sum_{i=1}^{n} a_i$ and $\sum_{j=1}^{n} a_j$ represent the sum of the first n terms of the sequence $\{a_n\}$, that is, the nth partial sum.
 - (b) $\sum_{i=1}^{n} a_i = \underbrace{a_j + a_j + \dots + a_j}_{n \text{ terms}} = na_j$, which, in general, is not the same as $\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$.
- **11.** $3+2+\frac{4}{3}+\frac{8}{9}+\cdots$ is a geometric series with first term a=3 and common ratio $r=\frac{2}{3}$. Since $|r|=\frac{2}{3}<1$, the series converges to $\frac{a}{1-r}=\frac{3}{1-2/3}=\frac{3}{1/3}=9$.
- **12.** $\frac{1}{8} \frac{1}{4} + \frac{1}{2} 1 + \cdots$ is a geometric series with r = -2. Since |r| = 2 > 1, the series diverges.
- **13.** $-2 + \frac{5}{2} \frac{25}{8} + \frac{125}{32} \cdots$ is a geometric series with a = -2 and $r = \frac{5/2}{-2} = -\frac{5}{4}$. Since $|r| = \frac{5}{4} > 1$, the series diverges by (4).
- **14.** $1 + 0.4 + 0.16 + 0.064 + \cdots$ is a geometric series with ratio 0.4. The series converges to $\frac{a}{1-r} = \frac{1}{1-2/5} = \frac{5}{3}$ since $|r| = \frac{2}{5} < 1$.
- **15.** $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n-1}$ is a geometric series with a=5 and $r=\frac{2}{3}$. Since $|r|=\frac{2}{3}<1$, the series converges to $\frac{a}{1-r}=\frac{5}{1-2/3}=\frac{5}{1/3}=15$.
- **16.** $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}}$ is a geometric series with a=1 and $r=-\frac{6}{5}$. The series diverges since $|r|=\frac{6}{5}>1$.
- 17. $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^{n-1}.$ The latter series is geometric with a=1 and $r=-\frac{3}{4}$. Since $|r|=\frac{3}{4}<1$, it converges to $\frac{1}{1-(-3/4)}=\frac{4}{7}$. Thus, the given series converges to $\left(\frac{1}{4}\right)\left(\frac{4}{7}\right)=\frac{1}{7}$.
- **18.** $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^n}$ is a geometric series with ratio $r = \frac{1}{\sqrt{2}}$. Since $|r| = \frac{1}{\sqrt{2}} < 1$, the series converges. Its sum is $\frac{1}{1 1/\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2} 1} = \frac{\sqrt{2}}{\sqrt{2} 1} \cdot \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = \sqrt{2}(\sqrt{2} + 1) = 2 + \sqrt{2}.$
- **19.** $\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}} = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{\pi}{3}\right)^n$ is a geometric series with ratio $r = \frac{\pi}{3}$. Since |r| > 1, the series diverges.
- **20.** $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}} = 3 \sum_{n=1}^{\infty} \left(\frac{e}{3}\right)^n$ is a geometric series with first term 3(e/3) = e and ratio $r = \frac{e}{3}$. Since |r| < 1, the series converges. Its sum is $\frac{e}{1 e/3} = \frac{3e}{3 e}$.
- **21.** $\sum_{n=1}^{\infty} \frac{n}{n+5}$ diverges since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{n+5} = 1 \neq 0$. [Use (7), the Test for Divergence.]

22. $\sum_{n=1}^{\infty} \frac{3}{n} = 3 \sum_{n=1}^{\infty} \frac{1}{n}$ diverges since each of its partial sums is 3 times the corresponding partial sum of the harmonic

series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, which diverges. [If $\sum_{n=1}^{\infty} \frac{3}{n}$ were to converge, then $\sum_{n=1}^{\infty} \frac{1}{n}$ would also have to converge by

Theorem 8(i).] In general, constant multiples of divergent series are divergent.

23. Using partial fractions, the partial sums are

partial sum

 $\frac{2}{3}$ < 1, the

the series

um is

< 1. the

This sum is a telescoping series and $s_n = 1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n}$

Thus,
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} = \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n - 1} - \frac{1}{n} \right) = \frac{3}{2}.$$

24. $\sum_{n=1}^{\infty} \frac{(n+1)^2}{n(n+2)}$ diverges by (7), the Test for Divergence, since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n} = \lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 2n} \right) = 1 \neq 0.$$

- **25.** $\sum_{k=2}^{\infty} \frac{k^2}{k^2 1}$ diverges by the Test for Divergence since $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{k^2}{k^2 1} = 1 \neq 0$.
- **26.** Converges. $s_n = \sum_{i=1}^n \frac{2}{i^2 + 4i + 3} = \sum_{i=1}^n \left(\frac{1}{i+1} \frac{1}{i+3}\right)$ (using partial fractions). The latter sum is

$$\left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+2}\right) + \left(\frac{1}{n+1} - \frac{1}{n+3}\right) = \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}$$

(telescoping series). Thus,
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3} = \lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right) = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$$

27. Converges. $\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n} = \sum_{n=1}^{\infty} \left(\frac{3^n}{6^n} + \frac{2^n}{6^n} \right) = \sum_{n=1}^{\infty} \left[\left(\frac{1}{2} \right)^n + \left(\frac{1}{3} \right)^n \right] = \frac{1/2}{1 - 1/2} + \frac{1/3}{1 - 1/3} = 1 + \frac{1}{2} = \frac{3}{2}$

28.
$$\sum_{n=1}^{\infty} \left[(0.8)^{n-1} - (0.3)^n \right] = \sum_{n=1}^{\infty} (0.8)^{n-1} - \sum_{n=1}^{\infty} (0.3)^n \text{ [difference of two convergent geometric series]}$$
$$= \frac{1}{1 - 0.8} - \frac{0.3}{1 - 0.3} = 5 - \frac{3}{7} = \frac{32}{7}.$$

29. $\sum_{n=1}^{\infty} \sqrt[n]{2} = 2 + \sqrt{2} + \sqrt[3]{2} + \sqrt[4]{2} + \cdots$ diverges by the Test for Divergence since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} 2^{1/n} = 2^0 = 1 \neq 0.$$