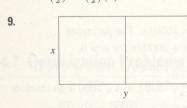


The volumes of the resulting boxes are 1, 1.6875, and 2 ft³. There appears to be a maximum volume of at least 2 ft³.

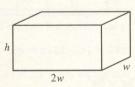
- (c) Volume $V = \text{length} \times \text{width} \times \text{height} \implies V = y \cdot y \cdot x = xy^2$
- (d) Length of cardboard = $3 \Rightarrow x + y + x = 3 \Rightarrow y + 2x = 3$
- (e) $y + 2x = 3 \implies y = 3 2x \implies V(x) = x(3 2x)^2$
- (f) $V(x) = x(3-2x)^2 \implies V'(x) = x \cdot 2(3-2x)(-2) + (3-2x)^2 \cdot 1 = (3-2x)[-4x + (3-2x)] = (3-2x)(-6x+3),$ so the critical numbers are $x = \frac{3}{2}$ and $x = \frac{1}{2}$. Now $0 \le x \le \frac{3}{2}$ and $V(0) = V(\frac{3}{2}) = 0$, so the maximum is $V(\frac{1}{2}) = (\frac{1}{2})(2)^2 = 2$ ft³, which is the value found from our third figure in part (a).



 $xy = 1.5 \times 10^6$, so $y = 1.5 \times 10^6/x$. Minimize the amount of fencing, which is $3x + 2y = 3x + 2\left(1.5 \times 10^6/x\right) = 3x + 3 \times 10^6/x = F(x)$. $F'(x) = 3 - 3 \times 10^6/x^2 = 3\left(x^2 - 10^6\right)/x^2$. The critical number is $x = 10^3$ and F'(x) < 0 for $0 < x < 10^3$ and F'(x) > 0 if $x > 10^3$, so the absolute minimum occurs when $x = 10^3$ and $y = 1.5 \times 10^3$.

The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.

- **10.** Let *b* be the length of the base of the box and *h* the height. The volume is $32,000 = b^2h \implies h = 32,000/b^2$. The surface area of the open box is $S = b^2 + 4hb = b^2 + 4(32,000/b^2)b = b^2 + 4(32,000)/b$. So $S'(b) = 2b 4(32,000)/b^2 = 2(b^3 64,000)/b^2 = 0 \implies b = \sqrt[3]{64,000} = 40$. This gives an absolute minimum since S'(b) < 0 if 0 < b < 40 and S'(b) > 0 if b > 40. The box should be $40 \times 40 \times 20$.
- 11. Let b be the length of the base of the box and b the height. The surface area is $1200 = b^2 + 4hb \implies h = \left(1200 b^2\right)/(4b)$. The volume is $V = b^2h = b^2\left(1200 b^2\right)/4b = 300b b^3/4 \implies V'(b) = 300 \frac{3}{4}b^2$. $V'(b) = 0 \implies 300 = \frac{3}{4}b^2 \implies b^2 = 400 \implies b = \sqrt{400} = 20$. Since V'(b) > 0 for 0 < b < 20 and V'(b) < 0 for b > 20, there is an absolute maximum when b = 20 by the First Derivative Test for Absolute Extreme Values (see page 280). If b = 20, then $b = \left(1200 20^2\right)/(4 \cdot 20) = 10$, so the largest possible volume is $b^2h = (20)^2(10) = 4000 \text{ cm}^3$.



V = lwh \Rightarrow $10 = (2w)(w)h = 2w^2h$, so $h = 5/w^2$. The cost is $10(2w^2) + 6[2(2wh) + 2(hw)] = 20w^2 + 36wh$, so $C(w) = 20w^2 + 36w(5/w^2) = 20w^2 + 180/w$. $C'(w) = 40w - 180/w^2 = 40\left(w^3 - \frac{9}{2}\right)/w^2 \Rightarrow w = \sqrt[3]{\frac{9}{2}}$ is the

critical number. There is an absolute minimum for C when $w=\sqrt[3]{\frac{9}{2}}$ since C'(w)<0 for $0< w<\sqrt[3]{\frac{9}{2}}$ and C'(w)>0 for $w>\sqrt[3]{\frac{9}{2}}$. $C\left(\sqrt[3]{\frac{9}{2}}\right)=20\left(\sqrt[3]{\frac{9}{2}}\right)^2+\frac{180}{\sqrt[3]{9/2}}\approx\163.54 .

(b) Let x denote the length of the side

of the square being cut out. Let *y* denote the length of the base.

13.

critical num

- $C\left(\sqrt[3]{\frac{45}{16}}\right)$ **14.** (a) Let the perimeter
- perimete number minimu
 - (b) Let p be $y = \frac{1}{2}p$ $2x = \frac{1}{2}$ Second
- However, it $D(x) = \begin{pmatrix} x \\ y \end{pmatrix}$ occur at the D'(x) = 2x D''(x) = 3

closest to th

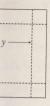
15. The distanc

16. The square $D(x) = (x \\ \Leftrightarrow x = \frac{4}{3}$ The point o

17.

 $4x^{2} +$

 $S\left(-\frac{1}{3}\right) = y = \pm\sqrt{4}$



$$(+3)$$
, maximum is

ount of fencing, $10^6/x = F(x)$.

tal number is $0 \text{ if } x > 10^3, \text{ so}$ $0 \times 10^3.$

 $= 32,000/b^2.$

o absolute

⇒

 $b) = 300 - \frac{3}{4}b^2.$
< b < 20 and

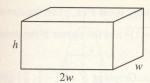
Absolute ossible volume

². The cost is

$$= \sqrt[3]{\frac{9}{2}} \text{ is the}$$

$$< \sqrt[3]{\frac{9}{2}} \text{ and}$$

13.



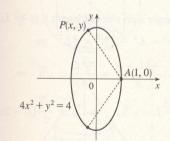
$$10 = (2w)(w)h = 2w^2h$$
, so $h = 5/w^2$. The cost is

$$C(w) = 10(2w^{2}) + 6[2(2wh) + 2hw] + 6(2w^{2})$$
$$= 32w^{2} + 36wh = 32w^{2} + 180/w$$

$$C'(w) = 64w - 180/w^2 = 4(16w^3 - 45)/w^2 \implies w = \sqrt[3]{\frac{45}{16}}$$
 is the

critical number. C'(w) < 0 for $0 < w < \sqrt[3]{\frac{45}{16}}$ and C'(w) > 0 for $w > \sqrt[3]{\frac{45}{16}}$. The minimum cost is $C\left(\sqrt[3]{\frac{45}{16}}\right) = 32(2.8125)^{2/3} + 180/\sqrt{2.8125} \approx \191.28 .

- 14. (a) Let the rectangle have sides x and y and area A, so A = xy or y = A/x. The problem is to minimize the perimeter = 2x + 2y = 2x + 2A/x = P(x). Now $P'(x) = 2 2A/x^2 = 2(x^2 A)/x^2$. So the critical number is $x = \sqrt{A}$. Since P'(x) < 0 for $0 < x < \sqrt{A}$ and P'(x) > 0 for $x > \sqrt{A}$, there is an absolute minimum at $x = \sqrt{A}$. The sides of the rectangle are \sqrt{A} and $A/\sqrt{A} = \sqrt{A}$, so the rectangle is a square.
 - (b) Let p be the perimeter and x and y the lengths of the sides, so $p=2x+2y \Rightarrow 2y=p-2x \Rightarrow y=\frac{1}{2}p-x$. The area is $A(x)=x\left(\frac{1}{2}p-x\right)=\frac{1}{2}px-x^2$. Now $A'(x)=0 \Rightarrow \frac{1}{2}p-2x=0 \Rightarrow 2x=\frac{1}{2}p \Rightarrow x=\frac{1}{4}p$. Since A''(x)=-2<0, there is an absolute maximum for A when $x=\frac{1}{4}p$ by the Second Derivative Test. The sides of the rectangle are $\frac{1}{4}p$ and $\frac{1}{2}p-\frac{1}{4}p=\frac{1}{4}p$, so the rectangle is a square.
- 15. The distance from a point (x,y) on the line y=4x+7 to the origin is $\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}$. However, it is easier to work with the *square* of the distance; that is, $D(x)=\left(\sqrt{x^2+y^2}\right)^2=x^2+y^2=x^2+(4x+7)^2.$ Because the distance is positive, its minimum value will occur at the same point as the minimum value of D. $D'(x)=2x+2(4x+7)(4)=34x+56, \text{ so } D'(x)=0 \quad \Leftrightarrow \quad x=-\frac{28}{17}.$ D''(x)=34>0, so D is concave upward for all x. Thus, D has an absolute minimum at $x=-\frac{28}{17}$. The point closest to the origin is $(x,y)=\left(-\frac{28}{17},4\left(-\frac{28}{17}\right)+7\right)=\left(-\frac{28}{17},\frac{7}{17}\right)$.
- **16.** The square of the distance from a point (x, y) on the line y = -6x + 9 to the point (-3, 1) is $D(x) = (x + 3)^2 + (y 1)^2 = (x + 3)^2 + (-6x + 8)^2 = 37x^2 90x + 73$. D'(x) = 74x 90, so D'(x) = 0 $\Leftrightarrow x = \frac{45}{37}$. D''(x) = 74 > 0, so D is concave upward for all x. Thus, D has an absolute minimum at $x = \frac{45}{37}$. The point on the line closest to (-3, 1) is $\left(\frac{45}{37}, \frac{63}{37}\right)$.



From the figure, we see that there are two points that are farthest away from A(1,0). The distance d from A to an arbitrary point P(x,y) on the ellipse is $d=\sqrt{(x-1)^2+(y-0)^2}$ and the square of the distance is $S=d^2=x^2-2x+1+y^2=x^2-2x+1+(4-4x^2)=-3x^2-2x+5$. S'=-6x-2 and $S'=0 \Rightarrow x=-\frac{1}{3}$. Now S''=-6<0, so we know that S has a maximum at $x=-\frac{1}{3}$. Since $-1 \le x \le 1$, S(-1)=4,

 $S\left(-\frac{1}{3}\right) = \frac{16}{3}$, and S(1) = 0, we see that the maximum distance is $\sqrt{\frac{16}{3}}$. The corresponding y-values are $y = \pm \sqrt{4 - 4\left(-\frac{1}{3}\right)^2} = \pm \sqrt{\frac{32}{9}} = \pm \frac{4}{3}\sqrt{2} \approx \pm 1.89$. The points are $\left(-\frac{1}{3}, \pm \frac{4}{3}\sqrt{2}\right)$.