40.
$$\lim_{x \to \infty} \frac{x - 9}{\sqrt{4x^2 + 3x + 2}} = \lim_{x \to \infty} \frac{1 - 9/x}{\sqrt{4 + (3/x) + (2/x^2)}} = \frac{1 - 0}{\sqrt{4 + 0 + 0}} = \frac{1}{2}.$$

Using the fact that $\sqrt{x^2} = |x| = -x$ for x < 0, we divide the numerator by -x and the denominator by $\sqrt{x^2}$.

Using the fact that
$$\sqrt{x^2} = |x| = -x$$
 for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $x < 0$, we direct that $\sqrt{x^2} = |x| = -x$ for $\sqrt{x^2} =$

The horizontal asymptotes are $y = \pm \frac{1}{2}$. The polynomial $4x^2 + 3x + 2$ is positive for all x, so the denominator never approaches zero, and thus there is no vertical asymptote.

- 41. Let's look for a rational function.
 - (1) $\lim_{x \to +\infty} f(x) = 0 \implies \text{degree of numerator} < \text{degree of denominator}$
 - (2) $\lim_{x\to 0} f(x) = -\infty$ \Rightarrow there is a factor of x^2 in the denominator (not just x, since that would produce a sign change at x = 0), and the function is negative near x = 0.
 - (3) $\lim_{x \to 3^-} f(x) = \infty$ and $\lim_{x \to 3^+} f(x) = -\infty$ \Rightarrow vertical asymptote at x = 3; there is a factor of (x 3) in the denominator.
 - (4) $f(2) = 0 \implies 2$ is an x-intercept; there is at least one factor of (x-2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us $f(x) = \frac{2-x}{x^2(x-3)}$ as one possibility.

42. Since the function has vertical asymptotes x = 1 and x = 3, the denominator of the rational function we are looking for must have factors (x-1) and (x-3). Because the horizontal asymptote is y=1, the degree of the numerator must equal the degree of the denominator, and the ratio of the leading coefficients must be 1. One possibility

is
$$f(x) = \frac{x^2}{(x-1)(x-3)}$$
.

43. $y = \frac{1-x}{1+x}$ has domain $(-\infty, -1) \cup (-1, \infty)$.

$$\lim_{x \to \pm \infty} \frac{1-x}{1+x} = \lim_{x \to \pm \infty} \frac{1/x - 1}{1/x + 1} = \frac{0-1}{0+1} = -1, \text{ so } y = -1 \text{ is a HA.}$$

The line
$$x = -1$$
 is a VA.

$$y' = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} = \frac{-2}{(1+x)^2} < 0 \text{ for } x \neq 1. \text{ Thus,}$$

$$y'' = -2 \cdot \frac{-2(1+x)}{[(1+x)^2]^2} = \frac{4}{(1+x)^3} < 0 \text{ for } x < -1 \text{ and } y'' > 0 \text{ for } x > -1, \text{ so the curve is CD on } (-\infty, -1)$$

and CU on $(-1, \infty)$. Since x = -1 is not in the domain, there is no IP.

There is no

$$\Leftrightarrow x > 0,$$

and
$$y' < 0$$

$$y'' > 0 \Leftrightarrow$$

45.
$$\lim_{x \to \pm \infty} \frac{x}{x^2}$$

horizontal a

$$y' = \frac{x^2 + 1}{(x^2 + 1)^2}$$

$$x^2 < 1 \Leftrightarrow$$

on
$$(-\infty, -\infty)$$

$$y'' = \frac{\left(1 + \frac{1}{2}\right)^2}{2}$$

CU on
$$(\sqrt{3})$$

46.
$$y = \frac{x}{\sqrt{x^2}}$$

$$y=\pm 1$$
 are

Thus,
$$y$$
 is i

on
$$(-\infty, 0)$$

tor by $\sqrt{x^2}$.

produce a

of
$$(x-3)$$
 in

ht-hand limits

on we are looking of the numerator possibility

44.
$$y = \frac{1+2x^2}{1+x^2}$$
 has domain \mathbb{R}

$$\lim_{x \to \pm \infty} \frac{1 + 2x^2}{1 + x^2} = \lim_{x \to \pm \infty} \frac{1/x^2 + 2}{1/x^2 + 1} = \frac{0 + 2}{0 + 1} = 2, \text{ so } y = 2 \text{ is a HA}.$$

There is no VA.
$$y' = \frac{(1+x^2)(4x) - (1+2x^2)(2x)}{(1+x^2)^2} = \frac{2x}{(1+x^2)^2} > 0$$

and $y' < 0 \iff x < 0$. Thus, y is increasing on $(0, \infty)$ and y is decreasing on $(-\infty, 0)$. There is a local (and

absolute) minimum at
$$(0,1)$$
. $y'' = \frac{\left(1+x^2\right)^2(2)-(2x)\cdot 2\left(1+x^2\right)(2x)}{\left[\left(1+x^2\right)^2\right]^2} = \frac{2-6x^2}{\left(1+x^2\right)^3} = 0 \quad \Leftrightarrow \quad x = \pm \frac{1}{\sqrt{3}}$.

$$y'' > 0 \iff -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$
, so the curve is CU on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and CD on $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}}, \infty\right)$.

There are IP at $\left(\pm \frac{1}{\sqrt{3}}, \frac{5}{4}\right)$

horizontal asymptote.

$$y' = \frac{x^2 + 1 - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} = 0 \text{ when } x = \pm 1 \text{ and } y' > 0 \quad \Leftrightarrow$$

 $x^2 < 1 \iff -1 < x < 1$, so y is increasing on (-1, 1) and decreasing on $(-\infty, -1)$ and $(1, \infty)$.

CU on $(\sqrt{3}, \infty)$ and $(-\sqrt{3}, 0)$ and CD on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$.

 $y = \pm 1$ are HA. There is no VA. $y = x (x^2 + 1)^{-1/2} \implies$

Thus, y is increasing for all x. $y'' = \left(-\frac{3}{2}\right)\left(x^2+1\right)^{-5/2}(2x) = \frac{-3x}{(x^2+1)^{5/2}} > 0$ for x < 0. So the curve is CU on $(-\infty, 0)$ and CD on $(0, \infty)$. There is an inflection point at (0, 0).

