We use a procedure like long division:

$$\begin{array}{r} x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots \\
 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \cdots \overline{)x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \cdots } \\
 \frac{x - \frac{1}{2}x^3 + \frac{1}{24}x^5 - \cdots }{\frac{1}{3}x^3 - \frac{1}{30}x^5 + \cdots } \\
 \frac{\frac{1}{3}x^3 - \frac{1}{6}x^5 + \cdots }{\frac{1}{3}x^3 - \frac{1}{6}x^5 + \cdots } \\
 \end{array}$$

Thus

$$\ln x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$

ta

Although we have not attempted to justify the formal manipulations used in Example 10, they are legitimate. There is a theorem which states that if both $f(x) = \sum c_n x^n$ and $g(x) = \sum b_n x^n$ converge for |x| < R and the series are multiplied as if they were polynomials, then the resulting series also converges for |x| < R and represents f(x)g(x). For division we require $b_0 \neq 0$; the resulting series converges for sufficiently small |x|.

12.10 Exercises

- 1. If $f(x) = \sum_{n=0}^{\infty} b_n (x-5)^n$ for all x, write a formula for b_8 .
- **2.** (a) The graph of f is shown. Explain why the series

$$1.6 - 0.8(x - 1) + 0.4(x - 1)^2 - 0.1(x - 1)^3 + \cdots$$

is *not* the Taylor series of f centered at 1.

(b) Explain why the series

 $2.8 + 0.5(x - 2) + 1.5(x - 2)^2 - 0.1(x - 2)^3 + \cdots$

is *not* the Taylor series of f centered at 2.

3-10 IIII Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \rightarrow 0$.] Also find the associated radius of convergence.

3. $f(x) = \cos x$	4. $f(x) = \sin 2x$
5. $f(x) = (1 + x)^{-3}$	6. $f(x) = \ln(1 + x)$
7. $f(x) = e^{5x}$	8. $f(x) = xe^x$
9. $f(x) = \sinh x$	10. $f(x) = \cosh x$

11–18 IIII Find the Taylor series for f(x) centered at the given value of *a*. [Assume that *f* has a power series expansion. Do not show that $R_n(x) \rightarrow 0$.]

- 11. $f(x) = 1 + x + x^2$, a = 2
- **12.** $f(x) = x^3$, a = -1
- **13.** $f(x) = e^x$, a = 3
- 14. $f(x) = \ln x$, a = 2
- **15.** $f(x) = \cos x$, $a = \pi$
- **16.** $f(x) = \sin x$, $a = \pi/2$
- **17.** $f(x) = 1/\sqrt{x}, \quad a = 9$
- **18.** $f(x) = x^{-2}, a = 1$
- **19.** Prove that the series obtained in Exercise 3 represents cos *x* for all *x*.
- **20.** Prove that the series obtained in Exercise 16 represents sin *x* for all *x*.
- **21.** Prove that the series obtained in Exercise 9 represents sinh *x* for all *x*.
- **22.** Prove that the series obtained in Exercise 10 represents cosh *x* for all *x*.

23–32 IIII Use a Maclaurin series derived in this section to obtain the Maclaurin series for the given function.

$23. f(x) = \cos \pi x$	24. $f(x) = e^{-x/2}$
25. $f(x) = x \tan^{-1} x$	26. $f(x) = \sin(x^4)$
27. $f(x) = x^2 e^{-x}$	28. $f(x) = x \cos 2x$