12.3 Exercises

SECTION 12.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS ' 765

i) If Lw f(x) dx is convergent, then (4) gives
3 o< [0 dv < [ dx
since f(x) = 0. Therefore

—a1+2a,\a1+ff(x)dx—M say

i=2
Since s, < M for all n, the sequence {s,} is bounded above. Also
Sp+1 = Sp T Anr1 = S

since ap1 = f(n + 1) = 0. Thus, {s,} is an increasing bounded sequence and so it is
convergent by the Monotonic Sequence Theorem (12.1.11). This means that = a, is
convergent.

(i) If [ f(x) dx is divergent, then fl" f(x) dx — o as n — © because f(x) = 0. But (5)
gives

n—=1

["f@dax< 3 ai= s

and so s,-; — . This implies that s, — % and so X a, diverges. —

x=1and a,

1
7

=

Draw a picture to show that

What can you conclude about the series?

Suppose f is a continuous positive decreasing function for 13.
= f(n). By drawing a picture, rank the following
three quantities in increasing order:

TR
Q

ff (x) dx

il Use the Integral Test to determine whether the series is
wvergent or divergent.
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25-28 11 Find the values of p for which the series is convergent.

262

(ln n)? = nlnn [ln(ln n)]?




