$$\sum_{i=2}^{n} a_i \leqslant \int_1^n f(x) \, dx \leqslant \int_1^{\infty} f(x) \, dx$$

since $f(x) \ge 0$. Therefore

$$s_n = a_1 + \sum_{i=2}^n a_i \le a_1 + \int_1^\infty f(x) \, dx = M$$
, say

Since $s_n \leq M$ for all n, the sequence $\{s_n\}$ is bounded above. Also

$$s_{n+1} = s_n + a_{n+1} \geqslant s_n$$

since $a_{n+1} = f(n+1) \ge 0$. Thus, $\{s_n\}$ is an increasing bounded sequence and so it is convergent by the Monotonic Sequence Theorem (12.1.11). This means that $\sum a_n$ is convergent.

(ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\int_{1}^{n} f(x) dx \to \infty$ as $n \to \infty$ because $f(x) \ge 0$. But (5) gives

$$\int_{1}^{n} f(x) \ dx \le \sum_{i=1}^{n-1} a_{i} = s_{n-1}$$

and so $s_{n-1} \to \infty$. This implies that $s_n \to \infty$ and so Σ a_n diverges.

12.3 Exercises

1. Draw a picture to show that

$$\sum_{n=2}^{\infty} \frac{1}{n^{1.3}} < \int_{1}^{\infty} \frac{1}{x^{1.3}} \, dx$$

What can you conclude about the series?

2. Suppose f is a continuous positive decreasing function for $x \ge 1$ and $a_n = f(n)$. By drawing a picture, rank the following three quantities in increasing order:

$$\int_{1}^{6} f(x) dx \qquad \sum_{i=1}^{5} a_{i} \qquad \sum_{i=2}^{6} a_{i}$$

3-8 III Use the Integral Test to determine whether the series is convergent or divergent.

3.
$$\sum_{n=4}^{\infty} \frac{1}{n^4}$$

4.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$
 5. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$

6.
$$\sum_{n=0}^{\infty} e^{-n}$$

6

7.
$$\sum_{n=1}^{\infty} ne^{-}$$

6.
$$\sum_{n=1}^{\infty} e^{-n}$$
 7. $\sum_{n=1}^{\infty} ne^{-n}$ **8.** $\sum_{n=1}^{\infty} \frac{n+2}{n+1}$

9-24 III Determine whether the series is convergent or divergent.

9.
$$\sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$$

10.
$$\sum_{n=1}^{\infty} (n^{-1.4} + 3n^{-1.2})$$

11.
$$1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \cdots$$

12.
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \cdots$$

13.
$$\sum_{n=1}^{\infty} \frac{5 - 2\sqrt{n}}{n^3}$$

14.
$$\sum_{n=3}^{\infty} \frac{5}{n-2}$$

15.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

16.
$$\sum_{n=1}^{\infty} \frac{3n+2}{n(n+1)}$$

17.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

18.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 4n + 5}$$

19.
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

$$20. \sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

$$21. \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

22.
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

23.
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + n}$$

$$24. \sum_{n=3}^{\infty} \frac{1}{n \ln n \ln(\ln n)}$$

25–28 IIII Find the values of p for which the series is convergent.

25.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

26.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n \left[\ln(\ln n) \right]^p}$$