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44. Show that if @, > 0 and = a, is convergent, then = In(1 + ay)
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The meaning of the decimal representation of a number
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Show that this series always converges.
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The convergence tests that we have looked at so far apply only to series with positive
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular i importance are alternating series, whose terms alternate
in sign.

An alternating series is a series whose terms are alternately positive and negative. Here
are two examples:
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