6.2 Exercises

8 We

of the

y that

plane

of

-18 III Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

1.
$$y = x^2$$
, $x = 1$, $y = 0$; about the x-axis

$$1x + 2y = 2$$
, $x = 0$ $y = 0$; about the x-axis

$$\lambda y = 1/x$$
, $x = 1$, $x = 2$, $y = 0$; about the x-axis

4.
$$y = \sqrt{x - 1}$$
, $x = 2$, $x = 5$, $y = 0$; about the x-axis

f.
$$y = x^2$$
, $0 \le x \le 2$, $y = 4$, $x = 0$; about the y-axis

6.
$$x = y - y^2$$
, $x = 0$; about the y-axis

1.
$$y = x^2$$
, $y^2 = x$; about the x-axis

L
$$y = \sec x$$
, $y = 1$, $x = -1$, $x = 1$; about the x-axis

$$\oint y^2 = x, \ x = 2y; \quad \text{about the y-axis}$$

$$0. y = x^{2/3}, x = 1, y = 0;$$
 about the y-axis

II.
$$y = x$$
, $y = \sqrt{x}$; about $y = 1$

$$12. y = x^2, y = 4;$$
 about $y = 4$

1.
$$y = x^4$$
, $y = 1$; about $y = 2$

$$\mathbb{L} y = 1/x^2$$
, $y = 0$, $x = 1$, $x = 3$; about $y = -1$

15.
$$x = y^2$$
, $x = 1$; about $x = 1$

$$16. y = x, y = \sqrt{x}; \text{ about } x = 2$$

II.
$$y = x^2$$
, $x = y^2$; about $x = -1$

$$1 + y = x$$
, $y = 0$, $x = 2$, $x = 4$; about $x = 1$

Refer to the figure and find the volume generated by mating the given region about the specified line.

- M. R. about OA
- **20.** \Re_1 about OC
- $\mathbb{L} \mathcal{R}$ about AB
- **22.** \mathcal{R}_1 about BC
- $\mathbb{L} \mathcal{R}_2$ about OA
- **24.** \Re_2 about OC
- $\mathbb{L} \mathcal{R}_2$ about AB
- **26.** \Re_2 about BC

- 27. R₃ about OA
- 28. \Re_3 about OC
- 29. \Re_3 about AB
- 30. \Re_3 about BC

31-36 III Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

31.
$$y = \tan^3 x$$
, $y = 1$, $x = 0$; about $y = 1$

32.
$$y = (x - 2)^4$$
, $8x - y = 16$; about $x = 10$

33.
$$y = 0$$
, $y = \sin x$, $0 \le x \le \pi$; about $y = 1$

34.
$$y = 0$$
, $y = \sin x$, $0 \le x \le \pi$; about $y = -2$

35.
$$x^2 - y^2 = 1$$
, $x = 3$; about $x = -2$

36.
$$2x + 3y = 6$$
, $(y - 1)^2 = 4 - x$; about $x = -5$

 \nearrow 37–38 III Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the volume of the solid obtained by rotating about the x-axis the region bounded by these curves.

37.
$$y = x^2$$
, $y = \sqrt{x+1}$

37.
$$y = x^2$$
, $y = \sqrt{x+1}$ **38.** $y = x^4$, $y = 3x - x^3$

[AS] 39-40 IIII Use a computer algebra system to find the exact volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

39.
$$y = \sin^2 x$$
, $y = 0$, $0 \le x \le \pi$; about $y = -1$

40.
$$y = x^2 - 2x$$
, $y = x \cos(\pi x/4)$; about $y = 2$

41-44 III Each integral represents the volume of a solid. Describe the solid.

41.
$$\pi \int_0^{\pi/2} \cos^2 x \, dx$$

42.
$$\pi \int_{2}^{5} y \, dy$$

43.
$$\pi \int_0^1 (y^4 - y^8) dy$$

44.
$$\pi \int_0^{\pi/2} \left[(1 + \cos x)^2 - 1^2 \right] dx$$

45. A CAT scan produces equally spaced cross-sectional views of a human organ that provide information about the organ otherwise obtained only by surgery. Suppose that a CAT scan of a human liver shows cross-sections spaced 1.5 cm apart. The liver is 15 cm long and the cross-sectional areas, in square centimeters, are 0, 18, 58, 79, 94, 106, 117, 128, 63, 39, and 0. Use the Midpoint Rule to estimate the volume of the liver.

46. A log 10 m long is cut at 1-meter intervals and its crosssectional areas A (at a distance x from the end of the log) are