We must integrate between the appropriate y-values, y = -2 and y = 4. Thus

$$A = \int_{-2}^{4} (x_R - x_L) \, dy = \int_{-2}^{4} \left[(y+1) - \left(\frac{1}{2} y^2 - 3 \right) \right] dy$$

$$= \int_{-2}^{4} \left(-\frac{1}{2} y^2 + y + 4 \right) dy = -\frac{1}{2} \left(\frac{y^3}{3} \right) + \frac{y^2}{2} + 4y \right]_{-2}^{4}$$

$$= -\frac{1}{6} (64) + 8 + 16 - \left(\frac{4}{3} + 2 - 8 \right) = 18$$

We could have found the area in Example 6 by integrating with respect to x instead of y, but the calculation is much more involved. It would have meant splitting the region in two and computing the areas labeled A_1 and A_2 in Figure 14. The method we used in Example 6 is much easier.

FIGURE 14

6.1 Exercises

1-4 IIII Find the area of the shaded region.

 $y = 5x - x^2$ (4, 4)v = x

5-26 III Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.

5.
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

6.
$$y = \sin x$$
, $y = x$, $x = \pi/2$, $x = \pi$

7.
$$y = x$$
, $y = x^2$

8.
$$y = x^2$$
, $y = x^4$

9.
$$y = \sqrt{x+3}$$
, $y = (x+3)/2$

10.
$$y = 1 + \sqrt{x}$$
, $y = (3 + x)/3$

11.
$$y = x^2$$
, $y^2 = x$

12.
$$y = x$$
, $y = \sqrt[3]{x}$

13.
$$y = 12 - x^2$$
, $y = x^2 - 6$

14.
$$y = x^3 - x$$
, $y = 3x$

15.
$$y = \sqrt{x}, \quad y = \frac{1}{2}x, \quad x = 9$$

16.
$$y = 8 - x^2$$
, $y = x^2$, $x = -3$, $x = 3$

17.
$$x = 2y^2$$
, $x + y = 1$